Mass hierarchies in string theory and experimental predictions

I. Antoniadis

CERN

SCALARS 2011 - Warsaw, 26-29 August 2011

- Motivations and mass hierarchy
- 2 Strings, branes and extra dimensions (flat and warped)
- 3 Infinitesimal string coupling and linear dilaton background
- Main accelerator signatures and nature of the EWSB scalar

BSM physics: driven by mass hierarchy problem

EW scale: very sensitive to high energy physics \sim UV cutoff Λ why gravity is so weak compared to the other interactions? $\Lambda = M_P$

Possible answer (alternative to supersymmetry): Low UV cutoff $\Lambda \sim \text{TeV}$

- low scale gravity \Rightarrow large extra dimensions, warped dimensions
- low string scale \Rightarrow low scale gravity, ultra weak string coupling

Experimentally testable framework:

- spectacular model independent predictions
- radical change of high energy physics at the TeV scale

Framework of type I string theory \Rightarrow D-brane world

I.A.-Arkani-Hamed-Dimopoulos-Dvali '98

- gravity: closed strings propagating in 10 dims
- gauge interactions: open strings with their ends attached on D-branes

Dimensions of finite size:
$$n$$
 transverse $6 - n$ parallel

calculability
$$\Rightarrow R_{\parallel} \simeq \mathit{I}_{\mathrm{string}}$$
 ; R_{\perp} arbitrary

$$M_P^2 \simeq rac{1}{g_s^2} M_s^{2+n} R_\perp^n \qquad \qquad g_s = lpha : ext{ weak string coupling}$$
 Planck mass in $4+n$ dims: M_*^{2+n}

small
$$M_s/M_P$$
 : extra-large R_\perp

$$M_s \sim 1 \; {
m TeV} \gg R_\perp^n = 10^{32} \, I_s^n$$
 [16]

$$R_{\perp} \sim .1 - 10^{-13}$$
 mm for $n = 2 - 6$

distances
$$\langle R_{\perp} : \text{gravity } (4+n) \text{-dim} \rightarrow \text{strong at } 10^{-16} \text{ cm}$$

Adelberger et al. '06

 $R_{\perp} \lesssim$ 45 $\mu{\rm m}$ at 95% CL

ullet dark-energy length scale $pprox 85 \mu \mathrm{m}$

Gravitational radiation in the bulk ⇒ **missing energy**

Angular distribution ⇒ spin of the graviton

Collider bounds on R_{\perp} in mm			
	n=2	n = 4	n = 6
LEP 2	4.8×10^{-1}	1.9×10^{-8}	6.8×10^{-11}
Tevatron	5.5×10^{-1}	1.4×10^{-8}	4.1×10^{-11}
LHC	4.5×10^{-3}	5.6×10^{-10}	2.7×10^{-12}

Origin of EW symmetry breaking?

possible answer: radiative breaking

I.A.-Benakli-Quiros '00

$$V = \mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$$

 $\mu^2 = 0$ at tree but becomes < 0 at one loop

non-susy vacuum

simplest case: one scalar doublet from the same brane

$$\Rightarrow$$
 tree-level V same as susy: $\lambda = \frac{1}{8}(g^2 + g'^2)$

D-terms

$$\mu^2 = -g^2 \varepsilon^2 M_s^2 \leftarrow \text{effective UV cutoff}$$

$$\varepsilon^{2}(R) = \frac{R^{3}}{2\pi^{2}} \int_{0}^{\infty} dl l^{3/2} \frac{\theta_{2}^{4}}{16l^{4}\eta^{12}} \left(il + \frac{1}{2}\right) \sum_{n} n^{2} e^{-2\pi n^{2}R^{2}l}$$

$$IR$$

$$R \to 0$$
: $\varepsilon(R) \simeq 0.14$ large transverse dim $R_{\perp} = l_s^2/R \to \infty$

$$R o \infty$$
: $\varepsilon(R) M_s \sim \varepsilon_\infty/R$ $\varepsilon_\infty \simeq 0.008$ UV cutoff: $M_s \to 1/R$

Brout-Englert-Higgs = component of a higher dim gauge field $\Rightarrow \varepsilon_{\infty} \text{ calculable in the effective field theory}$

Quartic coupling ⇒ mass prediction:

- tree level : $M_H = M_Z$
- low-energy SM radiative corrections top quark sector : $M_H \sim 120 \; \text{GeV}$

Also M_s or $1/R \sim$ a few or several TeV

Randal Sundrum models

spacetime = slice of AdS5 :
$$ds^2=e^{-2k|y|}\eta_{\mu\nu}dx^\mu dx^\nu+dy^2$$
 $k^2\sim \Lambda/M_5^3$

- ullet exponential hierarchy: $M_W = M_P e^{-2kr_c}$ $M_P^2 \sim M_5^3/k$ $M_5 \sim M_{GUT}$
- 4d gravity localized on the UV-brane, but KK gravitons on the IR

$$m_n = c_n k e^{-2kr_c} \sim \text{TeV}$$
 $c_n \simeq (n+1/4)$ for large n

⇒ spin-2 TeV resonances in di-lepton or di-jet channels [18] [19]

- weakly coupled for $m_n < M_5 e^{-2kr_c}$ $\Rightarrow k < M_5$
- viable models: SM gauge bosons in the bulk
 EWSB sector on the IR-brane
- AdS/CFT duals to strongly coupled 4d field theories composite models, technicolor-type $g_{YM} = M_5/k > 1$

Other accelerator signatures

- Large TeV dimensions seen by SM gauge interactions
 - ⇒ KK resonances of SM gauge bosons

I.A. '90

$$M_n^2 = M_0^2 + \frac{n^2}{R^2}$$
 ; $n = \pm 1, \pm 2, \dots$

string physics and possible strong gravity effects

Massive string vibrations \Rightarrow e.g. resonances in dijet distribution

$$M_j^2 = M_0^2 + M_s^2 j$$
; maximal spin: $j + 1$

higher spin excitations of quarks and gluons with strong interactions

Anchordoqui-Goldberg-Lüst-Nawata-Taylor-Stieberger '08

production of micro-black holes?

Giddings-Thomas, Dimopoulos-Landsberg '01

Black hole production

String-size black hole energy threshold : $M_{
m BH} \simeq M_s/g_s^2$

Horowitz-Polchinski '96, Meade-Randall '07

- ullet string size black hole: $r_H \sim l_s = M_s^{-1}$
- ullet black hole mass: $M_{
 m BH} \sim r_H^{d-3}/G_N$ $G_N \sim I_s^{d-2} g_s^2$

weakly coupled theory \Rightarrow strong gravity effects occur much above $M_{s},\ M_{*}$

$$g_s \sim 0.1$$
 (gauge coupling) $\Rightarrow M_{\rm BH} \sim 100 M_s$

Comparison with Regge excitations : $M_n = M_s \sqrt{n} \, \Rightarrow$

production of $n \sim 1/g_s^4 \sim 10^4$ string states before reach $M_{\rm BH}$

Extra U(1)'s and anomaly induced terms

```
masses suppressed by a loop factor
```

usually associated to known global symmetries of the SM

(anomalous or not) such as (combinations of)

Baryon and Lepton number, or PQ symmetry

Two kinds of massive U(1)'s:

I.A.-Kiritsis-Rizos '02

- 4d anomalous U(1)'s: $M_A \simeq g_A M_s$
- 4d non-anomalous U(1)'s: (but masses related to 6d anomalies)

$$M_{NA} \simeq g_A M_s V_2 \leftarrow (6d \rightarrow 4d)$$
 internal space $\Rightarrow M_{NA} \geq M_A$

Standard Model on D-branes

global symmetries

 B and L become massive due to anomalies Green-Schwarz terms

- the global symmetries remain in perturbation
 - Baryon number ⇒ proton stability
 - Lepton number ⇒ protect small neutrino masses

- Lepton number
$$\Rightarrow$$
 protect small neutrino masses no Lepton number $\Rightarrow \frac{1}{M_s} L L H H \to \text{Majorana mass: } \frac{\langle H \rangle^2}{M_s} L L$ $\sim \text{GeV}$

• B, L \Rightarrow extra Z's (B lighter than 4d anomaly fee B-L) with possible leptophobic couplings leading to CDF-type Wij events [3] Anchordoqui-I.A.-Goldberg-Huang-Lüst-Taylor '11

More general framework: large number of species

N particle species \Rightarrow lower quantum gravity scale : $M_*^2 = M_p^2/N$

Dvali '07, Dvali, Redi, Brustein, Veneziano, Gomez, Lüst '07-'10

derivation from: black hole evaporation or quantum information storage

Pixel of size L containing N species storing information:

localization energy $E \gtrsim N/L \rightarrow$

Schwarzschild radius $R_s = N/(LM_p^2)$

no collapse to a black hole : $L \gtrsim R_s \Rightarrow L \gtrsim \sqrt{N}/M_p = 1/M_*$

 $M_* \simeq 1 \text{ TeV} \Rightarrow N \sim 10^{32} \text{ particle species !}$

2 ways to realize $N = 10^{32}$ lowering the string scale

● Large volume compactifications SM on D-branes [3]

$$N=R_{\perp}^{n} \, I_{s}^{n}$$
 : number of KK modes up to energies of order $M_{*} \simeq M_{s}$

 ${f 2}$ ${\it N}\sim$ effective number of string modes contributing to the BH bound

Dvali-Lüst '09, Dvali-Gomez '10

$$N_s = \frac{1}{g_s^2}$$
 with $g_s \simeq 10^{-16}$ SM on NS5-branes

I.A.-Pioline '99, I.A.-Dimopoulos-Giveon '01

in this case gravity does NOT become strong at M_s

Both ways are compatible with the general string relation:

$$M_P^2 = \frac{1}{g_s^2} V_6 M_s^8$$
 V_6 : internal 6d compactification volume

Gauge/Gravity duality ⇒ toy 5d bulk model

Gravity background : near horizon geometry (holography) Maldacena '98

Analogy from D3-branes : AdS_5

NS-5 branes : $(\mathcal{M}_6 \underset{\uparrow}{\otimes} \mathbb{R}_+)$

linear dilaton background in 5d flat string-frame metric $|\Phi| = -\alpha |y|$

Aharony-Berkooz-Kutasov-Seiberg '98

"cut" the space of the extra dimension \Rightarrow gravity on the brane

$$S_{bulk} = \int d^4x \int_0^{r_c} dy \sqrt{-g} \, e^{-\Phi} \left(M_5^3 R + M_5^3 (\nabla \Phi)^2 - \Lambda \right)$$
$$S_{vis(hid)} = \int d^4x \sqrt{-g} \left(e^{-\Phi} \right) \left(L_{SM(hid)} - T_{vis(hid)} \right)$$

Tuning conditions: $T_{vis} = -T_{hid} \leftrightarrow \Lambda < 0$ [9]

Linear dilaton background IA-Arvanitaki-Dimopoulos-Giveon '11

$$g_s^2 = e^{-\alpha |y|}$$
; $ds^2 = e^{\frac{2}{3}\alpha |y|} \left(\eta_{\mu\nu} dx^\mu dx^\nu + dy^2 \right) \leftarrow$ Einstein frame [9] $z \sim e^{\alpha y/3} \Rightarrow$ polynomial warp factor $+$ log varying dilaton

- exponential hierarchy: $g_s^2 = e^{-\alpha|y|}$ $M_P^2 \sim \frac{M_5^3}{\alpha} e^{\alpha r_c}$ $\alpha \equiv k_{RS}$
- 4d graviton flat, KK gravitons localized near SM

19 / 21

LST KK graviton phenomenology

- KK spectrum : $m_n^2 = \left(\frac{n\pi}{r_c}\right)^2 + \frac{\alpha^2}{4}$; $n = 1, 2, \ldots$
 - \Rightarrow mass gap + dense KK modes $\alpha \sim 1 \text{ TeV}$ $r_c^{-1} \sim 30 \text{ GeV}$
- couplings : $\frac{1}{\Lambda_n} \sim \frac{1}{(\alpha r_c)M_5}$
 - \Rightarrow extra suppression by a factor $(\alpha r_c) \simeq 30$
- width : $1/(\alpha r_c)^2$ suppression ~ 1 GeV
 - ⇒ narrow resonant peaks in di-lepton or di-jet channels
- extrapolates between RS and flat extra dims (n = 1)

⇒ distinct experimental signals

Conclusions

Mass hierarchy ⇒ testing strings at the TeV ?

- Well motivated theoretical framework with many testable experimental predictions new resonances, missing energy
- Several realizations with different signatures flat large extra dimensions, exp warped metrics, tiny string coupling and linear dilaton background
- Stimulus for micro-gravity experiments and accelerator searches

I. Antoniadis (CERN) 21 / 21