Yukawa Unification in SO(10) with light sparticle spectrum

Marcin Badziak

DAMTP and Cavendish Laboratory, University of Cambridge

27th August 2011

based on: MB, M. Olechowski, S. Pokorski, arXiv:1107.2764 (to appear in JHEP)

- $\textbf{O} \quad \textbf{Conditions for } t-b-\tau \text{ Yukawa unification}$
- **2** Yukawa unification with $\mu < 0$
 - interplay between ${\sf BR}(b\to s\gamma)$ and $(g-2)_\mu$
 - implications for SUSY spectrum

Yukawa Unification in SO(10)

Minimal SO(10) models predict unification of the top, bottom and tau Yukawa couplings at M_{GUT}

 $b-\tau$ Yukawa unification leads to tree level bottom mass bigger than the observed mass

SUSY loop correction to the bottom mass must be negative:

$$\left(\frac{\delta m_b}{m_b}\right) \approx \frac{g_3^2}{6\pi^2} \mu m_{\tilde{g}} \tan\beta I(m_{\tilde{b}_1}^2, m_{\tilde{b}_2}^2, m_{\tilde{g}}^2) + \frac{h_t^2}{16\pi^2} \mu A_t \tan\beta I(m_{\tilde{t}_1}^2, m_{\tilde{t}_2}^2, \mu^2)$$

For $\mu > 0$

- The gluino-sbottom contribution has wrong sign so has to be suppressed \Rightarrow multi-TeV squarks
- The chargino-stop contribution must dominate $\Rightarrow A_t$ negative and very large to account for the observed bottom mass

Baer et al. '2008

For $\mu < 0$

- The gluino-sbottom contribution has correct sign
 - \Rightarrow squark masses may be small
 - \Rightarrow The sign and the magnitude of A_t much less restricted

Negative μ and $(g-2)_{\mu}$

SM prediction for $a_{\mu} \equiv (g-2)_{\mu}/2$ is more than 3σ below experimental result:

$$\delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = (28.7 \pm 8) \cdot 10^{-10}$$

Dominant SUSY contribution $\sim \operatorname{sgn}(\mu M_2) \tan \beta$

For phenomenologically acceptable models:

 $\mu < 0 \quad \Rightarrow \quad M_2 < 0$

Is it natural to consider $M_2 < 0$ in the context of SO(10) GUT?

YES \Rightarrow non-singlet F-terms give non-universal gaugino masses at M_{GUT} .

Negative μ and $(g-2)_{\mu}$

SM prediction for $a_{\mu} \equiv (g-2)_{\mu}/2$ is more than 3σ below experimental result:

$$\delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = (28.7 \pm 8) \cdot 10^{-10}$$

Dominant SUSY contribution $\sim \operatorname{sgn}(\mu M_2) \tan \beta$

For phenomenologically acceptable models:

 $\mu < 0 \quad \Rightarrow \quad M_2 < 0$

Is it natural to consider $M_2 < 0$ in the context of SO(10) GUT?

YES \Rightarrow non-singlet F-terms give non-universal gaugino masses at M_{GUT} .

Negative μ and $(g-2)_{\mu}$

SM prediction for $a_{\mu} \equiv (g-2)_{\mu}/2$ is more than 3σ below experimental result:

$$\delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = (28.7 \pm 8) \cdot 10^{-10}$$

Dominant SUSY contribution $\sim \operatorname{sgn}(\mu M_2) \tan \beta$

For phenomenologically acceptable models:

 $\mu < 0 \quad \Rightarrow \quad M_2 < 0$

Is it natural to consider $M_2 < 0$ in the context of SO(10) GUT?

 $YES \Rightarrow$ non-singlet F-terms give non-universal gaugino masses at M_{GUT} .

Gaugino masses in SUGRA can arise from dimension 5 operator:

$$\mathcal{L} \supset -\frac{F^{ab}}{2M_{\text{Planck}}}\lambda^a\lambda^b + \text{c.c.}$$

- $\bullet~\langle F^{ab}\rangle$ must transform as a singlet under the SM gauge group
- ullet $\langle F^{ab}
 angle$ must belong to the symmetric part of $oldsymbol{45} imesoldsymbol{45}$
- $\langle F^{ab}
 angle$ can be in a non-singlet representation of SO(10)

 $({f 45 imes 45})_S = {f 1} + {f 54} + {f 210} + {f 770}$

If $\langle F^{ab} \rangle$ transforms as **54**, gaugino masses are given by:

Martin, 2009

$$M_1: M_2: M_3 = -\frac{1}{2}: -\frac{3}{2}: 1$$

 $M_2 < 0 \Rightarrow \mu < 0$ can be consistent with $(g-2)_{\mu}$ constraint!

At large $\tan\beta$ proper REWSB requires $m_{H_d}^2 - m_{H_u}^2 \gtrsim M_Z^2$

For universal soft terms at the GUT scale:

- RG evolution results in positive (negative) contribution to $m_{H_d}^2 m_{H_u}^2$ proportional to $M_{1/2}^2$ (m_0^2)
- REWSB possible only if $M_{1/2} > m_0$
- μ^2 strongly correlated with $M_{1/2}^2$ \Rightarrow too large SUSY threshold correction to the bottom mass

Carena, Olechowski, Pokorski, Wagner '1994

proper REWSB requires e.g. Higgs splitting at M_{GUT} : $m_{H_u} < m_{H_d}$ Olechowski, Pokorski '1994 At large $\tan \beta$ proper REWSB requires $m_{H_d}^2 - m_{H_u}^2 \gtrsim M_Z^2$

For universal soft terms at the GUT scale:

- RG evolution results in positive (negative) contribution to $m_{H_d}^2 m_{H_u}^2$ proportional to $M_{1/2}^2$ (m_0^2)
- REWSB possible only if $M_{1/2} > m_0$
- μ^2 strongly correlated with $M^2_{1/2}$ \Rightarrow too large SUSY threshold correction to the bottom mass

Carena, Olechowski, Pokorski, Wagner '1994

proper REWSB requires e.g. Higgs splitting at M_{GUT} : $m_{H_u} < m_{H_d}$ Olechowski, Pokorski '1994

Non-universal scalar masses in SO(10)

All sfermions in **16**-dim rep. of SO(10) while Higgses in **10**-dim rep. \Rightarrow Pattern of soft scalar masses restricted by SO(10) gauge symmetry:

 $m_{H_d,H_u} = m_{10}$

$$m_{Q,U,D,L,E} = m_{16}$$

This is not enough for $t - b - \tau$ Yukawa unification with proper REWSB

D-term contribution

Rank of SO(10) is larger than the rank of SM gauge group \Rightarrow in the effective theory below the GUT scale soft scalar masses acquire new contribution proportional to *D*-term and charges of the broken U(1):

Kawamura, Murayama, Yamaguchi '1994

$$\begin{split} m_{H_d}^2 &= m_{10}^2 + 2D \\ m_{H_u}^2 &= m_{10}^2 - 2D \\ m_{Q,U,E}^2 &= m_{16}^2 + D \\ m_{D,L}^2 &= m_{16}^2 - 3D \end{split}$$

D > 0 may allow for proper REWSB

Murayama, Olechowski, Pokorski '1995

Non-universal scalar masses in SO(10)

All sfermions in **16**-dim rep. of SO(10) while Higgses in **10**-dim rep. \Rightarrow Pattern of soft scalar masses restricted by SO(10) gauge symmetry:

 $m_{H_d,H_u} = m_{10}$ $m_{Q,U,D,L,E} = m_{16}$

This is not enough for $t - b - \tau$ Yukawa unification with proper REWSB

D-term contribution

Rank of SO(10) is larger than the rank of SM gauge group \Rightarrow in the effective theory below the GUT scale soft scalar masses acquire new contribution proportional to *D*-term and charges of the broken U(1):

Kawamura, Murayama, Yamaguchi '1994

$$\begin{split} m_{H_d}^2 &= m_{10}^2 + 2D \\ m_{H_u}^2 &= m_{10}^2 - 2D \\ m_{Q,U,E}^2 &= m_{16}^2 + D \\ m_{D,L}^2 &= m_{16}^2 - 3D \end{split}$$

D > 0 may allow for proper REWSB

Murayama, Olechowski, Pokorski '1995

The model

$\mu < 0$

• Non-universal scalar masses:

$$\begin{split} m_{H_d}^2 &= m_{10}^2 + 2D \\ m_{H_u}^2 &= m_{10}^2 - 2D \\ m_{Q,U,E}^2 &= m_{16}^2 + D \\ m_{D,L}^2 &= m_{16}^2 - 3D \end{split}$$

• Non-universal gaugino masses:

$$M_1 = -\frac{1}{2}M_{1/2}$$
$$M_2 = -\frac{3}{2}M_{1/2}$$
$$M_3 = M_{1/2}$$

• Universal trilinear couplings: $A_U = A_D = A_E = A_0$

5 parameters + $\tan\beta$

$$(g-2)_{\mu} \text{ vs } b
ightarrow s \gamma$$

$(g-2)_{\mu}$

SM prediction is more than 3σ below the experimental result \Rightarrow light SUSY spectrum is required for significant (positive) SUSY contribution

$\mathsf{BR}(b \to s\gamma)$

SM prediction is in 1σ agreement with the experimental data Charged Higgs contribution increases SM result \Rightarrow heavy SUSY spectrum is preferred

How to disentangle
$$(g-2)_{\mu}$$
 from $b \to s\gamma$?

• $\tilde{\chi}^{\pm} - \tilde{\nu}_{\mu}$ contribution:

$$a_{\mu}^{\chi^{\pm}} \approx \frac{g_2^2}{32\pi^2} \frac{m_{\mu}^2}{M_{\rm SUSY}^2} \operatorname{sgn}(\mu M_2) \tan\beta$$

2 $\tilde{\chi}^0 - \tilde{\mu}$ contribution:

$$a_{\mu}^{\chi^{0}} \approx \frac{1}{192\pi^{2}} \frac{m_{\mu}^{2}}{M_{SUSY}^{2}} \left[g_{1}^{2} \operatorname{sgn}(\mu M_{1}) - g_{2}^{2} \operatorname{sgn}(\mu M_{2}) \right] \tan \beta$$

Our model: $m_{\tilde{
u}_{\mu}} pprox m_{\tilde{\mu}_L} < m_{\tilde{\mu}_R}$ (due to D-term splitting)

∜

chargino contribution dominates

SUSY contributions to $b \rightarrow s\gamma$

Chargino - squarks contribution enhanced at large $an \beta$:

$$\begin{split} C_{7,8}^{\chi} &\supset s_{\tilde{t}} c_{\tilde{t}} \frac{\tilde{U}_{a2} \, \tilde{V}_{a2} \, m_t}{\sin 2\beta \, m_{\chi_a^+}} \left[F_{7,8}^{(3)} \left(\frac{m_{\tilde{t}_1}^2}{m_{\chi_a^+}^2} \right) - F_{7,8}^{(3)} \left(\frac{m_{\tilde{t}_2}^2}{m_{\chi_a^+}^2} \right) \right] \\ &- \frac{\tilde{U}_{a2} \tilde{V}_{a1} M_W}{\sqrt{2} \cos \beta m_{\chi_a^+}} \left[F_{7,8}^{(3)} \left(\frac{m_{\tilde{q}}^2}{m_{\chi_a^+}^2} \right) - c_{\tilde{t}}^2 \, F_{7,8}^{(3)} \left(\frac{m_{\tilde{t}_1}^2}{m_{\chi_a^+}^2} \right) - s_{\tilde{t}}^2 \, F_{7,8}^{(3)} \left(\frac{m_{\tilde{t}_2}^2}{m_{\chi_a^+}^2} \right) \right] \\ &- \frac{\mathcal{D}_{a2} \tilde{V}_{a1} M_W}{\sqrt{2} \cos \beta m_{\chi_a^+}} \left[F_{7,8}^{(3)} \left(\frac{m_{\tilde{q}}^2}{m_{\chi_a^+}^2} \right) - c_{\tilde{t}}^2 \, F_{7,8}^{(3)} \left(\frac{m_{\tilde{t}_1}^2}{m_{\chi_a^+}^2} \right) - s_{\tilde{t}}^2 \, F_{7,8}^{(3)} \left(\frac{m_{\tilde{t}_2}^2}{m_{\chi_a^+}^2} \right) \right] \\ &- \frac{\mathcal{D}_{a2} \tilde{V}_{a1} M_W}{\sqrt{2} \cos \beta m_{\chi_a^+}} \left[F_{7,8}^{(3)} \left(\frac{m_{\tilde{q}}^2}{m_{\chi_a^+}^2} \right) - c_{\tilde{t}}^2 \, F_{7,8}^{(3)} \left(\frac{m_{\tilde{t}_1}^2}{m_{\chi_a^+}^2} \right) - s_{\tilde{t}}^2 \, F_{7,8}^{(3)} \left(\frac{m_{\tilde{t}_2}^2}{m_{\chi_a^+}^2} \right) \right] \\ &- \frac{\mathcal{D}_{a2} \tilde{V}_{a1} M_W}{\sqrt{2} \cos \beta m_{\chi_a^+}} \left[F_{7,8}^{(3)} \left(\frac{m_{\tilde{t}_1}^2}{m_{\chi_a^+}^2} \right) - c_{\tilde{t}}^2 \, F_{7,8}^{(3)} \left(\frac{m_{\tilde{t}_2}^2}{m_{\chi_a^+}^2} \right) \right] \\ &- \frac{\mathcal{D}_{a2} \tilde{V}_{a1} M_W}{\sqrt{2} \cos \beta m_{\chi_a^+}} \left[F_{7,8}^{(3)} \left(\frac{m_{\tilde{t}_1}^2}{m_{\chi_a^+}^2} \right) - c_{\tilde{t}}^2 \, F_{7,8}^{(3)} \left(\frac{m_{\tilde{t}_2}^2}{m_{\chi_a^+}^2} \right) \right] \\ &- \frac{\mathcal{D}_{a2} \tilde{V}_{a1} M_W}{\sqrt{2} \cos \beta m_{\chi_a^+}} \left[F_{7,8}^{(3)} \left(\frac{m_{\tilde{t}_1}^2}{m_{\chi_a^+}^2} \right) - c_{\tilde{t}}^2 \, F_{7,8}^{(3)} \left(\frac{m_{\tilde{t}_2}^2}{m_{\chi_a^+}^2} \right) \right] \\ &- \frac{\mathcal{D}_{a2} \tilde{V}_{a1} M_W}{\sqrt{2} \cos \beta m_{\chi_a^+}} \left[F_{7,8}^{(3)} \left(\frac{m_{\tilde{t}_1}^2}{m_{\chi_a^+}^2} \right) - c_{\tilde{t}}^2 \, F_{7,8}^{(3)} \left(\frac{m_{\tilde{t}_1}^2}{m_{\chi_a^+}^2} \right) \right] \\ &- \frac{\mathcal{D}_{a2} \tilde{V}_{a2} M_W}{\sqrt{2} \cos \beta m_{\chi_a^+}} \left[F_{7,8}^{(3)} \left(\frac{m_{\tilde{t}_1}^2}{m_{\chi_a^+}^2} \right) \right] \\ &- \frac{\mathcal{D}_{a2} \tilde{V}_{a2} M_W}{\sqrt{2} \cos \beta m_{\chi_a^+}} \left[F_{7,8}^{(3)} \left(\frac{m_{\tilde{t}_2}^2}{m_{\chi_a^+}^2} \right) \right] \\ &- \frac{\mathcal{D}_{a2} \tilde{V}_{a2} M_W}{\sqrt{2} \cos \beta m_{\chi_a^+}} \left[F_{7,8}^{(3)} \left(\frac{m_{\tilde{t}_2}^2}{m_{\chi_a^+}^2} \right) \right] \\ &- \frac{\mathcal{D}_{a2} \tilde{V}_{a2} M_W}{\sqrt{2} \cos \beta m_{\chi_a^+}} \right] \\ &- \frac{\mathcal{D}_{a2} \tilde{V}_{a2} M_W}{\sqrt{2} \cos \beta m_{\chi_a^+}} \left[F_{7,8}^{(3)} \left(\frac{m_{\tilde{t}_2}^2}{m_{\chi_a^$$

Signs (relative to SM contribution) are the same as: $sgn(\mu A_t)$ for the stop-mixing part; $sgn(-\mu M_2)$ for the "gaugino" part

Chargino contribution should be negative to satisfy $b \to s \gamma$

 A_t is often driven to negative values by RGEs and the stop-mixing part has wrong (positive) sign for $\mu<0$

"gaugino" part is always negative (as preferred by phenomenology)

 $\mathsf{BR}(b \to s\gamma)$ prefers:

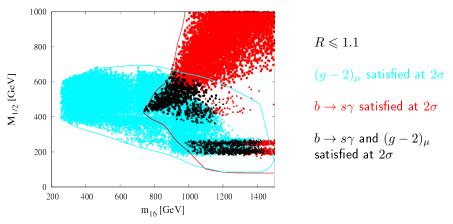
- the lightest chargino is gaugino-like $(\mu^2 > M_2^2)$
- $\bullet\,$ small or positive A_t
- large mass splitting between stops and 1st/2nd generation of squarks

$$R \equiv \frac{\langle v, \sigma \rangle (r, r)}{\min(h_t, h_b, h_\tau)} \Big|_{\text{GUT}}$$

$$(g - 2)_{\mu} \text{ satisfied at } 2\sigma$$

$$b \rightarrow s\gamma \text{ satisfied at } 2\sigma$$

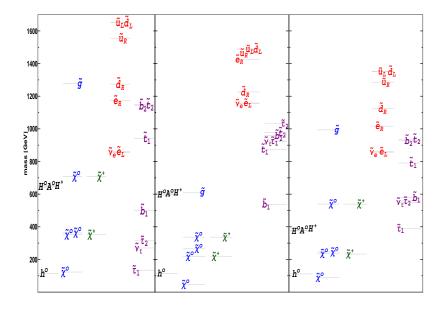
$$b \rightarrow s\gamma \text{ and } (g - 2)_{\mu}$$
satisfied at 2σ


$$b \rightarrow s\gamma \text{ and } (g - 2)_{\mu}$$
satisfied at 2σ

 $\max(h_t, h_b, h_{\tau})$

 $t-b-\tau$ Yukawa unification consistent with $b\to s\gamma$ and $(g-2)_{\mu}$

К


The WMAP bound on $\Omega_{\rm LSP}$ is also important

The WMAP bound selects two allowed regions of $M_{1/2}$ (and gluino mass):

- $\bullet\,$ resonant annihilation through Z or $h^0 \Rightarrow {\rm gluino\,\,mass} \sim 500-700$ GeV
- stau co-annihilations, A-funnel \Rightarrow gluino mass $\sim 900 1600$ GeV

Typical spectra

Conclusions

- t-b- au Yukawa coupling unification much more natural for $\mu < 0$
- \bullet Non-universality of soft terms at $M_{\rm GUT}$ are necessary for proper REWSB
- Appropriate pattern of non-universalities easily accommodated in SUSY SO(10) GUT:
 - $m_{10}-m_{16}$ splitting and D-term contribution to scalar masses
 - gaugino masses from non-singlet F-term in 54 of SO(10)
- $(g-2)_{\mu}$ anomaly explained without violating $b \rightarrow s\gamma$
- bino-like LSP (with small admixture of higgsino) may play a role of dark matter in the Universe:
 - stau coannihilations,
 - ullet resonant annihilations through h^0 , Z or A^0
- Light SUSY spectrum:
 - the whole SUSY spectrum easily below 1.5 TeV
 - predicted gluino mass is 500-700 GeV or 900-1600 GeV