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Our present knowledge of particle physics and the Universe
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Summary

Standard Model
SM problems in laboratory and in cosmology
Minimal extension approach

Standard Model – describes nearly everything that we
know

Gauge theory SU(3)×SU(2)×U(I)
Describes (together with
Einstein gravity)

all laboratory experiments
– electromagnetism,
nuclear processes, etc.
all processes in the
evolution of the Universe
after the Big Bang
Nucleosynthesis
(T < 1 MeV, t > 1sec)
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Inflating with a light inflaton

Summary

Standard Model
SM problems in laboratory and in cosmology
Minimal extension approach

Standard Model has experimental problems

Laboratory
Neutrino oscillations

Cosmology
Baryon asymmetry of the Universe
Dark Matter
Dark Energy
Inflation

Horizon problem (and flatness, entropy, . . . )
Initial density perturbations
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Neutrino oscillations

SAGE neutrino
observatory
(solar oscillations
evidence
νe→ νµ )

SuperKamiokande
(atmospheric
oscillations
νµ → ντ )

Reactor neutrinos, accelerator
neutrinos

Oscillation parameters
∆m2

21 7.59±0.20×10−5 eV2

sin2 2θ12 0.87±0.03
|∆m2

32| 2.43±0.13×10−3 eV2

sin2 2θ23 > 0.92
sin2 2θ13 < 0.15

Cl 95% 
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http://hitoshi.berkeley.edu/neutrino 

SuperK 90/99% 

All limits are at 90%CL

unless otherwise noted

LSND 90/99% 

MiniBooNE 

K2K
MINOS
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Baryon asymmetry of the Universe

Current universe contains
baryons and no antibarions
Current baryon density

ηB ≡
nB

nγ

' 6.1×10−10

Does not fit into the SM
(too weak CP violation, too
smooth phase transition)

20. Big-Bang nucleosynthesis 3
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Figure 20.1: The abundances of 4He, D, 3He, and 7Li as predicted by the standard
model of Big-Bang nucleosynthesis [11] − the bands show the 95% CL range. Boxes
indicate the observed light element abundances (smaller boxes: ±2σ statistical
errors; larger boxes: ±2σ statistical and systematic errors). The narrow vertical
band indicates the CMB measure of the cosmic baryon density, while the wider
band indicates the BBN concordance range (both at 95% CL). Color version at end
of book.

July 30, 2010 14:36
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Minimal extension approach

Dark Matter

CMB fluctuations

Rotation curves

“Bullet” cluster

Gravitational lensing

ΩDM ' 0.21
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Summary

Standard Model
SM problems in laboratory and in cosmology
Minimal extension approach

Dark Energy

← Supernova type Ia redshifts

accelerated expansion of the
Universe today

ΩΛ ' 0.74

Different from inflation
Much lower scale
No need to stop it

Can be explained “just” by a
cosmological constant
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Summary

Standard Model
SM problems in laboratory and in cosmology
Minimal extension approach

Inflation evidence – horizon problem

Microwave sky

Temperature
fluctuations
δT/T ∼ 10−5

Universe is uniform!
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Standard Model
SM problems in laboratory and in cosmology
Minimal extension approach

CMB gives measured predictions from inflation

Temperature fluctuations

Polarization

CMB spectrum
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Inflationary parameters from CMB

Spectrum of primordial scalar density perturbations is just
a bit not flat ns−1≡ d logPR

d logk

Tensor perturbations are compatible with zero r ≡ Pgrav
PR

(WMAP07 results)
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Let us expand the model in a minimal way

I will follow a “Minimal” approach
Explain the experimental facts with

minimal number of new particles
no new physical scales

Different situation in usual approaches
Solve hierarchy problems first

Supersymmetry,
Extra dimensions . . .

} New physics at TeV energies –
“masks” us from early Universe
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Standard Model
SM problems in laboratory and in cosmology
Minimal extension approach

νMSM — describes all, except for inflation

SM symmetrically extended by right handed (Majorana)
neutrinos Ni

Describes
DM by keV scale neutrino
N1

BAU via leptogenesys by
two heavier (GeV scale)
neutrinos N2,3
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However – nothing about scalars – not to be told here
[Asaka, Blanchet, Shaposhnikov’05, Asaka, Shaposhnikov’05]
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Summary

Standard Model
SM problems in laboratory and in cosmology
Minimal extension approach

Examples of minimal extensions leading to inflation

νMSM (for DM and Baryogenesys) +

Inflation with light inflaton [Shaposhnikov, Tkachev’06]
[Anisimov, Bartocci, FB’08]

[FB, Gorbunov’09]
(Introduces new particle)

Higgs boson inflation [FB, Shaposhnikov’08]
[FB, Gorbunov, Shaposhnikv’08]

[FB, Magnin, Shapshnikov’08]
(Modifies Higgs-gravity interaction, new scales MP/ξ ,
MP/

√
ξ )

R2 (scalaron) inflation [Starobinsky’80]
[Gorbunov, Panin’10]

(Modification only in the gravity sector)
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Experimental detection of the inflaton
Higgs mass bounds

Chaotic inflation – a scalar field

H 2 ' 1
3M2

P

(
V (X ) + Ẋ 2/2

)
, Ẍ + 3H Ẋ + V ′(X ) = 0

X

V
λ (20MP )4

4

3MP 20MP

λ

4 X 4

Slow roll inflation

δT/T ∼ 10−5 normalization

quartic coupling: λ ∼ 10−13 (or mass: m ∼ 1013 GeV)
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Light inflaton model adds one scalar particle to the SM

L = LSM

Standard Model

+ αH†HX 2

Interaction

+ β

4 X 4

Inflationary sector

(where β ' β0 = 1.5×10−13 – inflationary requirement)

mχ = mh

√
β

2α
– the inflaton mass is defined by α

The Higgs-inflaton scalar potential is

V (H,X ) = λ

(
H†H− α

λ
X 2
)2

+
β

4
X 4−1

2
µ

2X 2 + V0

[Anisimov, Bartocci, FB’08, FB, Gorbunov’09]
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Higgs mass bounds

Radiative corrections require a small SM-inflaton
coupling

Radiative corrections induce quartic coupling which should not
spoil the flatness of the potential

X

X

H

H

X

X

α α ⇒
X

X

X

X

α2 log
should be

<

X

X

X

X

β0

This leads to an upper bound on the SM-inflaton interaction

α . 10−7 (roughly: α <
√

β )

Lower bound for the inflaton mass

mχ > 90 MeV
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Radiative corrections require a small SM-inflaton
coupling

Radiative corrections induce quartic coupling which should not
spoil the flatness of the potential

δV =
m4(X )

64π2 log
m2(X )

µ2

should be
< Vinflaton =

β

4
X 4

m2
h(X ) = 4αX 2 (Higgs boson)

This leads to an upper bound on the SM-inflaton interaction

α . 10−7 (roughly: α <
√

β )

Lower bound for the inflaton mass

mχ > 90 MeV
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Preheating requires large SM-inflaton coupling

After inflation: empty &
cold
Needed: hot,
Tr > 150 GeV (to get
baryogenesis)

Equating H production rate
(∝ α2) to Hubble expansion
rate (∝ T 2) ΓXX→HH ∼H

Lower bound on α

α & 7×10−10

Parametric resonance?
Not so easy to create the Higgs

200 400 600 800

108
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103 tpr

nχ

nφ

α =10−9

α =10−10

α =10−11

α =10−12

α =10−13N
um
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en
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ty
Time

Inflaton

Higgs

The large Higgs self interaction
destroys coherence and spoils
parametric resonance.

[Anisimov, Bartocci, FB’08] Details
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Higgs mass bounds

Inflaton is in the experimentally explorable range

Inflaton mass window (from Cosmology)

90 MeV < mχ < 1.8 GeV

Lower bound: radiative corrections

Upper bound: sufficient reheating

Also possible: 2mH < mχ . 600 GeV

Details
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Inflaton-SM Interactions

As the Higgs boson, but light and suppressed by θ =
√

2βv/mχ

Created: in meson decays
Decays: the heaviest particle pairs (ee, ππ, µµ, KK )
Interacts with media: extremely weakly
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Inflaton is relatively long lived
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Production: hadron decays

Br(K +→ π+χ)≈ 2.3×10−9

Br
(
KL→ π0χ

)
≈ 1.0×10−8

Br
(
η → π0χ

)
≈1.8×10−12

Br(B→ Xsχ)≈ 10−5


×
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K+ expected
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Bound from
K +→ π+ +nothing

mχ > 120 MeV
Disfavoured:

170 MeV . mχ . 205 MeV

August 26–29, 2011 Fedor Bezrukov Light inflation – cosmology and experiment 22 / 29



Our present knowledge of particle physics and the Universe
Inflating with a light inflaton

Summary

Inflationary model
Bounds from cosmology – inflation and reheating
Experimental detection of the inflaton
Higgs mass bounds

Production: beam dump, ideal luminosity
σ

σpp,total
= Mpp

(
χs(0.5Br(K +→ π+χ) + 0.25Br(KL→

π0χ)) + χc Br(B→ χXs)
)

 1
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gg fusion, T2K

E , GeV
NuTeV 800
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Beam dump: CHARM bound is the best at present

Search for decays
of something into
γγ, e+e−, µ+µ−

=⇒

mχ > 270 MeV  1e-16
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 1e-10

 1e-08

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4
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Production: search in B decays

Br(K +→ π+χ)≈ 2.3×10−9

Br
(
KL→ π0χ

)
≈ 1.0×10−8

Br
(
η → π0χ

)
≈1.8×10−12

Br(B→ Xsχ)≈ 10−5


×
(

β

β0

)
·
(

100 MeV
mχ

)2

·
(

mχ

mhadron

)

Inflaton is produced quite abundant in B decays
With typical lifetime of 10−9 s it decays at some distance
but inside the detector
Search for events with offset vertex in b-factories – BaBar,
Belle
LHCb !
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Validity up to inflationary scale

Radiative corrections –
“screening” of the Higgs
self-interaction depending on
scale
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Higgs mass bounds

126GeV . mH . 190GeV
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Validity up to inflationary scale

Radiative corrections –
“screening” of the Higgs
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Recent CMS bounds
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Dark matter – add νMSM and stir

Light inflaton +
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[Asaka, Blanchet, Shaposhnikov’05, Shaposhnikov, Tkachev’06]

DM sterile neutrinos are produced in inflaton decays
BAU via leptogenesis with two heavier sterile neutrinos

DM neutrino mass bound from production mechanism

M1 . 80keV

Return
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Our present knowledge of particle physics and the Universe
Inflating with a light inflaton

Summary

Inflationary model
Bounds from cosmology – inflation and reheating
Experimental detection of the inflaton
Higgs mass bounds

Possible search for νMSM neutrino in the lab and in
the Universe

DM sterile neutrino N1, M1 ∼ 1−80keV
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X-ray constraints

X-ray line from the DM radiative decay
N1→ νγ

Neutrinoless double beta decay
mee < 50×10−3 eV
[FB’05] Details

Lepton asymmetry generating N2,3, M2,3 ∼ GeV
Neutrino production hadron decays: kinematics

Missing energy in K decays
Peaks in momentum of charged leptons for two body decays

Neutrino decays into SM particles: “nothing” to leptons and
hadrons

Beam target experiments with high intensity proton beam,
detector (preferably not dense) after the shielding.

[D. Gorbunov, M.Shaposhnikov’07]
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Our present knowledge of particle physics and the Universe
Inflating with a light inflaton

Summary

Summary

Start from:
Explain every experimental fact
Expand the Standard Model in a minimal way

Arrive to:
Predictions for low energy experiments!

Model with additional scalar inflaton
Inflaton is light, 90MeV < mχ < 1.8GeV
Higgs boson mass is in the window 126−190GeV
Inflaton can be searched in rare decays! (LHCb)
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WMAP-5 bounds

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.92  0.94  0.96  0.98  1

r

ns

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.92  0.94  0.96  0.98  1

r

ns

ξ=0

ξ=0.001

ξ=0.003

ξ=1

WMAP-5year

 0  0.02  0.04  0.06  0.08  0.1
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

r

ξ

Message

With non-minimal coupling it is very natural for βφ4 inflation to
be compatible with observations!

Return
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Dark matter – add νMSM and stir

A νMSM inspired model with inflation χ

(Shaposhnikov&Tkachev’06)

L =(LSM + N̄I i∂µγ
µNI−FαI L̄αNIΦ−

fI
2

N̄c
I NIX + h.c.)+

1
2

(∂µX )2−V (Φ,X )

ΩN =
1.6f (mχ )

S
· β

1.5×10−13 ·
(

M1

10keV

)3

·
(

100 MeV
mχ

)3

,

DM sterile neutrino mass bound

M1 . 13 ·
( mχ

300 MeV

)(S
4

)1/3

·
(

0.9
f
(
mχ

))1/3

keV .

ReturnAugust 26–29, 2011 Fedor Bezrukov Light inflation – cosmology and experiment 31 / 29

http://arxiv.org/abs/hep-ph/0604236


Backup slides Based on

Parametric enchancement

Let us suppose again that there is an inflaton X coupled to
some particle φ . Then, during inflaton oscillations, for the φ

modes with momentum k we have

φ̈k + 3Hφ̇k +

(
k2

a2(t)
+ g2X (t)2

)
φk = 0

Important – X (t) oscillates
Let us neglect the Universe expansion, and say that
X (t) = Asin(ωt), then

Mathieu equation

d2φk

dη2 + (Ak −2q cos2η) = 0

where Ak = k2/ω2 + 2q, q = g2X 2
0 /4ω2, η = ωt .
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Temperature estimate for the reheating

Equating mean free path nσ2I→2Hv ∼ n α2

πp2
avg

with the Hubble

rate H = T 2

mPl

√
π2g∗
90 we get

TR ≈
ζ (3)α2

π4

√
90
g∗

mPl

Requiring TR > 150GeV we can obtain the lower bound on α

α ≥ 7.3×10−8 ,

Return
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Temperature estimate for the reheating II

However, pavg � T , the cross-section is enhanced, so
ζ (3)α2

π3
T 4

p3
avg
∼ T 2√

90
8π3g∗MPl

For this estimate the bound is weaker
α ≥ 7×10−10

Upper bound for the inflaton mass

mχ ≤ 1.5
( mH

150GeV

)√
β

1.5×10−13 GeV

Return
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Inflaton mass window

Flatness from radiative corrections

mχ > 120
( mh

150 GeV

)(
β

1.5×10−13

) 1
2

MeV

Sufficient reheating

mχ ≤ 1.5
( mH

150GeV

)(
β

1.5×10−13

) 1
2

GeV

To be precise, the window also exists

2mH < mχ . 460 ·
( mh

150 GeV

)4/3
·
(

β

1.5×10−13

)1/3

GeV
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0νββ effective Majorana mass is small

mee =

∣∣∣∣∣∑i
miV 2

ei

∣∣∣∣∣
0.0001 0.01 1

m
MIN

   [eV]

0.001

0.01

0.1

1

|<
m

>
|  

 [
eV

]
NH

IH

QD

contribution from N1 is negligible |M1θ 2
e1| ≤ 10−5 eV

For heavier active neutrinos the contribution is always
negative mee <

∣∣∑i miV 2
ei

∣∣ smaller prediction

mee < 50×10−3 eV

F.B., 2006 return
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0νββ effective Majorana mass is small
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For heavier active neutrinos the contribution is always
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∣∣∑i miV 2
ei

∣∣ smaller prediction

mee < 50×10−3 eV

F.B., 2006 return
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Field dependent cut-off makes the model consistent

August 26–29, 2011 Fedor Bezrukov Light inflation – cosmology and experiment 37 / 29



Backup slides Based on

Inflationary regime – EW chiral theory

Lchiral =
1
2

(∂µ χ)2−U(χ)

− 1
2g2 tr[W 2

µν ]− v2

4
tr[V 2

µ ]

+ iQ̄L,R /DQL,R− (
ytv√

2
Q̄LŨ QR + · · ·+ h.c.)

with
U = exp [2iπaT a] , Vµ = (∂µU )U † + iWµ − iU BY

µ U †

and

v2 =
h2

Ω2(h)
=

M2
P

ξ

(
1−e−2χ/

√
6MP

)−1
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RG equations in the inflationary regime

16π
2
µ

∂

∂ µ
g′ =

(
1
6
− 1

12
+

20nf

9

)
g′3 , (1)

16π
2
µ

∂

∂ µ
g =−

(
43
6

+
1

12
− 4nf

3

)
g3 . (2)

16π
2
µ

∂

∂ µ
g3 =−7g2

3 . (3)

16π
2
µ

∂

∂ µ
ξ =−

(
3
2

g′2 + 3g2−6y2
t

)
ξ . (v2

∝ 1/ξ ) (4)

16π
2
µ

∂

∂ µ
yt =

(
−17

12
g′2− 3

2
g2−8g2

3 + 3y2
t

)
yt . (5)

16π
2
µ

∂

∂ µ

(
λ

ξ 2

)
=

1
ξ 2

(
−6y4

t +
3
8

(
2g2 + (g′2 + g2)2

))
. (6)
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Effective potential

can be obtained from the SM one by
removing the terms corresponding to the Higgs scalar
loops
setting Goldstone boson masses to zero
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