LIGHT HIGGSINOS AS HERALDS OF HIGHER DIMENSIONAL UNIFICATION

Wilfried Buchmüller DESY

with Felix Brümmer, arXiv:1105.0802, Sergei Bobrovskyi and Jan Hajer, in preparation

SCALARS 2011, Warsaw, August 2011

Is the GUT scale related to extra dimensions?

- Strong motivation for SUSY GUTs: symmetries of SM, gauge coupling unification, neutrino physics,...
- GUTs in more than 4D more attractive than GUTs in 4D
- Even more interesting: string compactifications with $E_8(\times E_8)$, as in compactifications of the heterotic string, F-theory GUTs, ...
- Possible signature: unusual spectrum of superparticle masses, due to large number of 'split multiplets' with GUT-scale masses

Example: spectrum in heterotic orbifold string model

Superparticle mass spectrum from hybrid mediation: gauge mediation terms rouphly (large) integer multiples of gravity mediation terms

(1) Soft terms from hybrid gauge-gravity mediation

Gauge-mediated supersymmetry breaking (see review Giudice & Rattazzi): background chiral superfield X and messenger fields in vector-like pairs Σ_i , $\widetilde{\Sigma}_i$, with superpotential

$$W = \sum_{i} \lambda_i \, X \Sigma_i \widetilde{\Sigma}_i \; .$$

Mass generation and SUSY breaking,

$$\langle X \rangle = M_{\rm m} + F \theta^2 , \quad M_{\rm m} \sim \Lambda_{\rm GUT} , \quad F \ll M_{\rm m}^2 ,$$

yields contribution to gaugino masses at the messenger scale,

$$M_a = \frac{g_a^2}{16\pi^2} n_a(r_i) \frac{F}{M_{\rm m}} ,$$

a = 1, 2, 3: SM gauge factors; $n_a(r_i)$: Dynkin index for rep $r_i(\Sigma_i)$.

In general, X-dependent gauge kinetic functions

$$\mathcal{L} = \frac{1}{4} \sum_{a} \int d^2 \theta \, \left(\frac{1}{g_a^2} + \kappa_a \frac{X}{M_{\rm P}} \right) \, W^{a\alpha} W^a_{\alpha} + \, \text{h.c.} \, ,$$

yields gravity-mediated contribution to gaugino masses,

$$M_a = \frac{1}{2} g_a^2 \kappa_a \frac{F}{M_{\rm P}} \; ,$$

with Planck mass $M_{\rm P} = 2.4 \cdot 10^{18}$ GeV; contribution of messenger pair comparable with gravity-mediated term since $(16\pi^2)M_{\rm m} \simeq M_{\rm P}$!.

Gauge-mediated soft scalar masses at 2-loop level,

$$m_{\Phi}^{2} = \frac{2}{\left(16\pi^{2}\right)^{2}} \left(\sum_{ai} g_{a}^{4} C_{a} n_{a}(r_{i})\right) \left|\frac{F}{M_{m}}\right|^{2} ,$$

with quadratic Casimirs for rep of $C_a(\Phi)$. In addition gravity-mediated piece,

$$\mathcal{L} = \int d^4\theta \, \left(\frac{X^{\dagger}}{M_{\rm P}} + \,\mathrm{h.c.} - \frac{1}{2} \frac{X^{\dagger} X}{M_{\rm P}^2}\right) \, \Phi^{\dagger} \Phi \, ,$$

which gives

$$m_{\Phi}^2 = \frac{1}{2} \left| \frac{F}{M_{\rm P}} \right|^2 \; .$$

Gravity mediation also generates μ and B_{μ} terms,

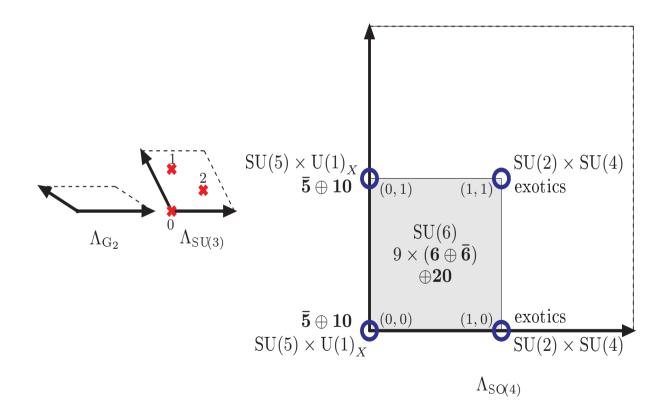
$$\mathcal{L} = \int d^4\theta \, \frac{X^{\dagger}}{M_{\rm P}} H_u H_d + \int d^4\theta \, \frac{X^{\dagger} X}{M_{\rm P}^2} H_u H_d + \, \text{h.c.} ,$$

with $\mu = \overline{F}/M_{\rm P}$ and $B_{\mu} = \left|F/M_{\rm P}\right|^2$, cubic terms $a \sim F/M_{\rm P}$ and a

gravitino mass

$$m_{3/2} = \frac{F}{\sqrt{3}M_{\rm P}}$$

of the order of the gravity-mediated soft masses.


Electroweak symmetry breaking requires

$$-\frac{M_Z^2}{2} \simeq |\mu|^2 + m_{H_u}^2 ,$$

$$\tan\beta \simeq \frac{m_{H_u}^2 + m_{H_d}^2 + 2|\mu|^2}{2 B_\mu} ;$$

hence for $\mu \sim 100 \text{ GeV}$ also $|m_{H_u}^2| \sim (100 \text{ GeV})^2$; but $|m_{H_d}^2| \gg (100 \text{ GeV})^2$ for $N_{\text{mess}} \gg 1$, and therefore $\tan \beta \gg 1$; less fine tuning?

(2) A heterotic orbifold model

Example: heterotic string on $\mathbb{Z}_{6-II} = \mathbb{Z}_3 \times \mathbb{Z}_2$ orbifold (Kobayashi, Raby, Zhang '04; WB,Hamaguchi, Lebedev, Ratz '05,06; Lebedev et al '06,'07; WB, Lüdeling,Schmidt '07,08;...) 3 SM generations, 1 pair of Higgs doublets, $\mathcal{O}(100)$ SM singlets, part of 'mini-landscape'.

Mass generation for vector-like exotics Σ_i :

field	representation	multiplicity	6D origin
d	$({f 3},{f 1})_{-1/3}$	4	bulk
\tilde{d}	$(\overline{f 3}, {f 1})_{1/3}$	4	bulk
ℓ	$({f 1},{f 2})_{1/2}$	4	bulk
$\widetilde{\ell}$	$({f 1},{f 2})_{-1/2}$	4	bulk
m	$(1,2)_{0}$	8	brane
s^+	$({f 1},{f 1})_{1/2}$	16	brane
s^-	$({f 1},{f 1})_{-1/2}$	16	brane

Selection rules for couplings require at least two SUSY-breaking background superfields X_1 and X_2 ,

$$W = X_1 d\tilde{d} + X_1 \ell \tilde{\ell} + X_2 mm + X_2 s^+ s^-$$
.

Huge vacuum degeneracy; SUSY breaking not yet fully explored, conceptual problem: moduli stabilization! Example: assume expectation

values of SM singlets ($M_{
m m} \sim \Lambda_{
m GUT}$, $F_i \ll M_{
m m}^2$),

 $\langle X_1 \rangle = M_{\rm m} + F_1 \,\theta^2, \qquad \langle X_2 \rangle = M_{\rm m} + F_2 \,\theta^2 ,$

with goldstino mixing angle $\phi\text{,}$

$$F_1 = F \cos \phi$$
, $F_2 = F \sin \phi$, $\frac{F}{\sqrt{3}M_P} = m_{3/2}$.

Gauge-mediated gaugino masses at the scale $M_{\rm m}$:

$$M_{1} = \frac{g^{2}}{16\pi^{2}} \frac{F}{M_{m}} \left(4\cos\phi + \frac{24}{5}\sin\phi \right) ,$$

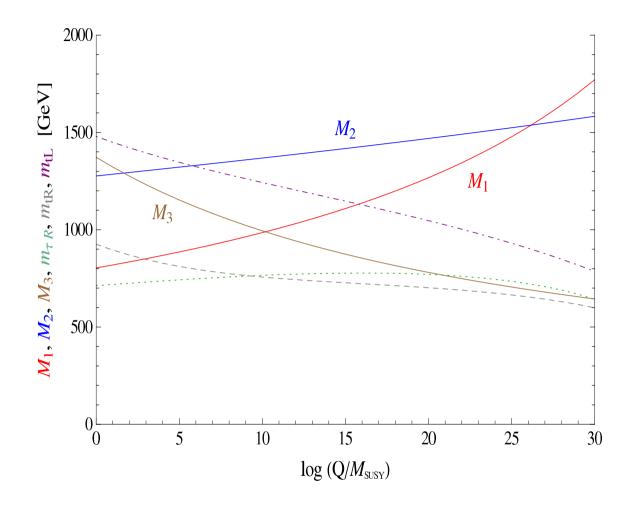
$$M_{2} = \frac{g^{2}}{16\pi^{2}} \frac{F}{M_{m}} \left(4\cos\phi + 4\sin\phi \right) ,$$

$$M_{3} = \frac{g^{2}}{16\pi^{2}} \frac{F}{M_{m}} 4\cos\phi .$$

Gauge-mediated scalar soft masses:

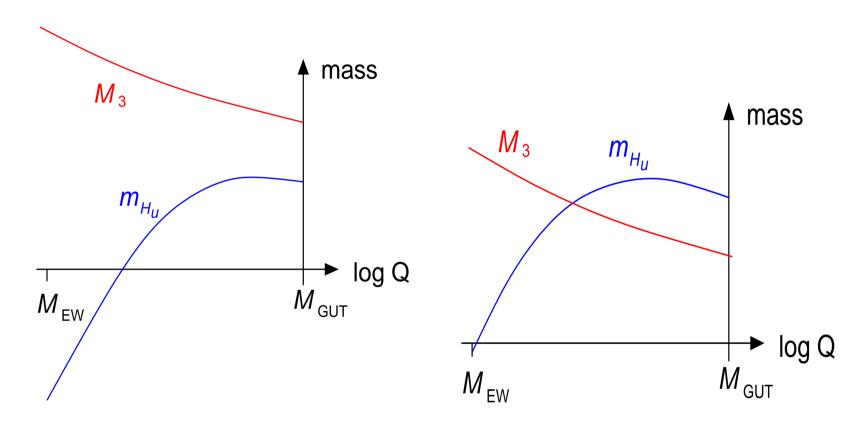
$$\begin{split} m_Q^2 &= 2\left(\frac{g^2}{16\pi^2}\right)^2 \left(\frac{F}{M_{\rm m}}\right)^2 \left(\frac{287}{50} + \frac{133}{50}\cos 2\phi\right) \ ,\\ m_U^2 &= 2\left(\frac{g^2}{16\pi^2}\right)^2 \left(\frac{F}{M_{\rm m}}\right)^2 \left(\frac{96}{25} + \frac{64}{25}\cos 2\phi\right) \ ,\\ m_D^2 &= 2\left(\frac{g^2}{16\pi^2}\right)^2 \left(\frac{F}{M_{\rm m}}\right)^2 \left(\frac{74}{25} + \frac{66}{25}\cos 2\phi\right) \ ,\\ m_L^2 &= m_{H_u}^2 = m_{H_d}^2 = 2\left(\frac{g^2}{16\pi^2}\right)^2 \left(\frac{F}{M_{\rm m}}\right)^2 \left(\frac{183}{50} - \frac{3}{50}\cos 2\phi\right) \ ,\\ m_E^2 &= 2\left(\frac{g^2}{16\pi^2}\right)^2 \left(\frac{F}{M_{\rm m}}\right)^2 \left(\frac{66}{25} - \frac{6}{25}\cos 2\phi\right) \ . \end{split}$$

NOTE: different mass for each SM representation!

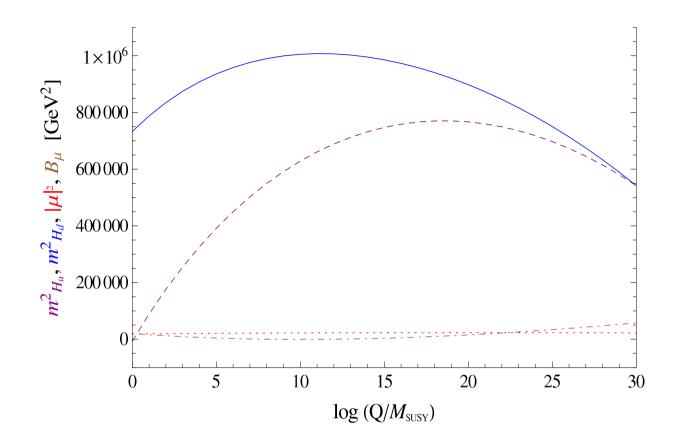

Specific choice of parameters: $M_{\rm m} = 5 \cdot 10^{15} \text{ GeV}$, $F = (2 \cdot 10^{10} \text{ GeV})^2$; supergravity contributions: $m_0 = m_{1/2} = 150 \text{ GeV} = 0.9 F/M_{\rm P}$, $m_{3/2} = 100 \text{ GeV}$, $\tan \phi = 1.9$, $\mu = m_0 = a_0$, $B_{\mu} = (1.6 m_0)^2 = (240 \text{ GeV})^2$; GUT-scale mass parameters listed in Table; $\tan \beta = 41$

mass parameter	value [GeV]
M_1	1771
M_2	1583
M_3	644
m_Q	786
m_U	599
m_D	478
$m_L = m_{H_u} = m_{H_d}$	736
m_E	643

Note: small value of M_3 , less than m_{H_u} , crucial for electroweak symmetry breaking!


· · ·	
particle	mass [GeV]
h_0	117
χ^0_1	137
χ_1^{\pm}	140
$\frac{\chi_2^0}{\chi_3^0}$	144
χ^0_3	799
χ_4^0	1296
χ_2^{\pm}	1296
H_0	856
A_0	857
H^{\pm}	861
$rac{ ilde{g}}{ ilde{ au}_1}$	1453
$\tilde{ au}_1$	713
other sleptons	910 - 1290
squarks	950 - 1750

Peculiar low energy spectrum: light Higgs/higgsinos, all the rest heavy!



Renormalization group running for gauginos, scalar τ ($\tilde{\tau}_R$), and scalar tops (\tilde{t}_R , \tilde{t}_L); strong increase of gluino mass at electroweak scale

Radiative electroweak symmetry breaking: large top-Yukawa coupling drives $m_{H_{u}}^{2}$ negative

For 'large' gluino mass, $M_3^2 > m_{H_u}^2$, Higgs vev too large; only for 'small' gluino mass, $M_3^2 < m_{H_u}^2$, realistic Higgs vev possible!

Renormalisation group evolution of Higgs mass parameters: $m_{H_d}^2$, $m_{H_u}^2$, $|\mu|^2$, and B_{μ} . Fine tuning improved? Variation of big gauge-mediation terms in discrete steps of small gravity-mediation term? Only $m_{H_u}^2$ needs to be tuned ...

(3) Cosmology and phenomenology

Gravitino LSP with mass O(100) GeV is interesting dark matter candidate; for high reheating temperatures, required by thermal leptogenesis, thermal production of gravitinos can yield observed dark matter abundance for typical gluino masses. Potential problem: BBN constraints on late decays of NLSP.

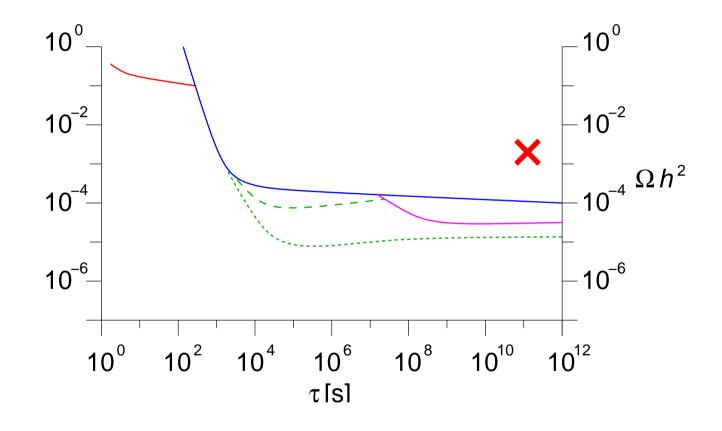
Proposal: consistent cosmology with leptogenesis, gravitino dark matter and BBN with higgsino as NLSP (Bolz, WB, Plümacher '98). Old BBN constraints: $\Omega_{\tilde{h}}h^2 \lesssim 8 \cdot 10^{-3}$ for lifetimes $\tau_{\tilde{h}} \lesssim 2 \cdot 10^6$ s (Ellis et al '90); crucial analysis of WIMP abundances showed 'higgsino hole': BBN bound satisfied for higgsino masses 80 GeV $< m_{\tilde{h}} < 300$ GeV (Edsjo, Gondolo '97); lifetime constraint yields upper bound on gravitino mass.

Present BBN bounds on NLSP abundances and lifetimes are much more stringent; for dominant hadronic NLSP decays and lifetimes $\tau_{\rm NLSP} \gtrsim$

 10^8 s (Kawasaki et al:04, Jedamzik:06):

$$\Omega_{\rm NLSP} h^2 \lesssim 1 \cdot 10^{-4} \text{ from } {}^2{\rm H} ,$$

 $\Omega_{\rm NLSP} h^2 \lesssim 3 \cdot 10^{-5} \text{ from } {}^3{\rm He} .$


Difficult to satisfy for general neutralino NLSP (Covi et al:'09), requires NLSP masses above $2~{\rm TeV}.$

Our model: higgsino decays mostly hadronic; due to small mass degeneray 3-body decays dominate, yields long lifetime; small relic abundance from coannihilations with chargino:

$$\tau(\chi_1^0) \simeq 2 \cdot 10^{11} \text{ s}, \quad \Omega_{\chi_1^0} h^2 = 3.2 \cdot 10^{-3};$$

present BBN bounds violated. Possible ways out: (How accurate are the BBN calculations?); small entropy production before BBN, small violation of R-parity, ...

Higgsino abundance is about four orders of magnitude smaller than typical bino-NLSP abundance:

LHC phenomenology: model difficult to test, since coloured states very heavy (consistent with present data!)

Closely related: arXiv:1107.5581, Baer, Barger & Huang, "Hidden SUSY at the LHC: the light higgsino-world scenario and the role of a lepton collider" (gravity mediation, even heavier squarks and gluino)

In principle possible: Drell-Yan production of higgsino pairs $\chi_{1,2}^0 \chi_1^{\pm}$, $\chi_1^0 \chi_2^0$, with subsequent 3-body decays, $\chi_1^{\pm} \rightarrow l^{\pm} \nu \chi_1^0, q \bar{q} \chi_1^0$; $\chi_2^0 \rightarrow l^+ l^- \chi_1^0, \nu \bar{\nu} \chi_1^0, q \bar{q} \chi_1^0$; problem: low p_T of final state particles.

Baer et al: very difficult at LHC because of QCD background, hope for ILC! We are more optimistic: focus on particular final states where background is suppressed, work in progress.

Also interesting: due to intermediate mass of χ_3^0 ('heavy bino'), 'medium' jet energies favoured in standard jets + MET searches.

OUTLOOK

- Supersymmetric GUTs in more than 4D attractive extrapolation of Standard Model
- Possible signatures: light scalar particles in connection with stabilization of GUT scale? Non-WIMP dark matter candidates? ...
- Further possibility: peculiar pattern of superparticle mass spectrum due to large number of split multiplets
- Hope: new results from the LHC!