IS the standard Higgs besen a true massive field ?
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Abstiract

1) LLattice calculationsiofthe (connected) scalar propagator G ()
2) Qualitative discrepancy. etween| broken and symmetric phase fior p=>0
3) WWhat doeesi the; theory say aneut G (p=0) 2
43 Perturbative calculations predict a standard massive Higgs besen
5) Hewever:: G (p=0) from the generating functional: W]J]
G (p=0)I firem rgoreus RG approeach
Gl (p) Hiem: Stevensen’s altermativercalculation
suggest that the standard Higgs besoni s NOT a true massive field
6) Passible phenomenclogical implications: ultra-weak: leng-range forces




|_attice measurement off the scalar propagator

P. Cea et all. Mod.Phys:Lett. A 1999
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Broken Phase (P. M. Stevenson Nucl. Phys. B 2005)

[Data for the connectedi propagator by Cea et al. Mod. Phys. LLett. A 1999

PM. Stevenson / Nuclear Phivsics B 729 [FS](2005) 542-557

£=(p*+m*)G(p)

0.96 t

x=0.07504, mp =0.1426

Fig. 9. As Fig. 7 but for x = 0.07504, with m g = 0.1426. The curve represents a simple, empirical fit to the data, to be
used in Fig. 10.




Comparisen With ether authors
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Broken Phase (P. M. Stevenson Nucl. Phys. B 2005)

Propagatoer data by Balogl et all. Nucl. Phys. B 2005

C=(p*+m*)G(p)




SUummanzing

[_attice: simulations are. net expected ter fiully: display.
all properties off the: infinie-volume theony,

Still, the existing calculations, ofi the (connected)
propagater G(p): provide  qualitativer  diffierences
PELWEEN BIOKEN PhAaSEe analSymmELrc phase for p>10

QUESHIeN: What 0egeS the theoly: say akeut G (j9=0)17




G (p=0) andithe effective potential

Tihe 2-pomt function at p=0, the Imverse of the connected propagator G (p=0),

IS obtaIned fromithe second derivative of the effective potential. Standard
PErtuative calculations give the fiollewingl picture:

(a)

INe gualitative difference betweenbroken and symmetric phase. However...




G(p=0) from W]J]

Most generall description of SSB: (M.C. : Phys. Rev. Di2002 ; Class. Quantum
Grav., 2009), Conslderan amitrany classical action

depending on ascalar field and etiern fields
(additienal scalar firelas, gauge fields; fermiens;...)
Iihe generating fitnctional for the Greenrs functions ofi the field 1s

Or by Integrating fermally on the




SSB and the general structure of

Tiake the average field i a large 4-velume
and-replace
S0 that

By/ restricting to a constantseurce J(x)=J=const., one finds

INew, terany. finite erder inithe Ioopiexpansion, the standardicondition for SSB' IS
expressed In terms off some non convex: (NC="INen Convex’) petential (See e. g.
L. Maranitet al. Nuel: Phys. B 1986, U. Riitschel Phys. Lett. B/ 1993)




Tihe connected Greens functions at p=0'are obtaimed from

and one finds

lI7 the sadale-peint approximation; the results dependreniy on
1) the abselute mimima: ofi the nen-convex potential
2) 1tS quadratic shape: at the minnma
Tihermesulis are

As it 1s well known, when J=0., a Nen-Zero V.e.V. reguires to take the miinite-volume
limit.




By Introducing dimensionless units

ONE. gets

Ithen; In the double limit where and

(Sorthat =) TNE ZEero-momentuim connected propagator DECOMES a two-
Valued funcuion. Example fior Py replacing

1)

2)

Analegous; resultsihold for depending on




Tihese twoe solutions admit a simple geometric Interpretation as
Hght- and lefit-" second derivatives of the: I_Legendre transionrmed

efifective potential

[Due to) 1S convexity, this IS net ani infinitely-differentianle
function In the presence ofi SSB (K., Symanzik 1970).

Jihusi the: 1ssue aboul G(p=0) requires tor Understand WhaIch IS
e moest apprepriate definition off the effective potential,

0)f 2




Ihe effective potential from rigerous RG approach

A widely accepted approach to Renormalization Group consists in starting from a
bare action defined at'some. ultraviclet cutoff .\ and effiectively integrating out
shiells off quantum moedesi down te an Infraredicutolii ‘<. ThIS procedure providesa

K-OEpeEndent efifiective action that evelves interthe full effective action in
the limii, 1.e.

Tihe k-dependence of IS determined by a dififerential functional flow,
equatien whichris known in the literature i slightly different forms (see E. J.
\Wegner and A. Houghten Phys. Rev. A 1973, J. Polchinski Nucl. Phys. B 1984, T.
S. Chang et all. Phys. Rep. 1992, C. \Wetterich, Nucl. Phys. B 1991, ...).

TIRIS gIves risete a class off functionals that Iterpolater hetween tie classical dare
Euclideaniaction andithefiull effiective action of the theory.

110 evaluate G(jp=0), the relevant quantity, Isithe: k=dependent effective potential
Wiileh naturally appears 1n'a dervative expansion of:
areunad a space-timerconstant confiiguration




J. Alexandre, V. Branchina and J. Pelenyi, Phys. Lett., B 1999




Dritim;, Jo M. Pawloeski andl L. \/ergara 2006




M. C. and D. Zappala®, Phys. Lett. B 2006

Figure 1: V(@) ws. ¢, with Z = 1 fixed, at varlous values of the infrared
cutoff k: the lowest curve 1s for £ = A = 10, and then, from bottom to the top,
k=03, 0.13, 0.1, 0.08, 0.05.




Summanizing: the k-dependent effective potential

ebtained by integrating eut shells of: guantun moades dowWn to
seme Infrared cutofi '<, Isiclearly approaching convexity: In the
it

Erem a physical peint eif VIew, this means that convexificaioniis

Induced hy the Very leng Wavelengin moges that, serterspeak; live
I different vacuumistates

Tiherefore; thiswell defined theoreticall construction SUPPots the
[dentiification of (@nd NOIT of )iasi the true

effiective petential inrthe mfinite-velume limit of the theery.
Expliciv calculations, of SUpport the conclusion that

IS a tWwo~Valued function that Inciudes the selution
asiIn a massless theory




G(p) from Stevensen’s altermative calculation

Stevenson’s problem Is to resolve the gualitative conflict (see Coleman and
\Weinberg) that exists In pure phi*4 theories hetween 1-loop potential and Its RG-
Improvement. Toethisiend, e starts fromithe two hasic diagrams ofi the symmetric
phase (Mad. Bhys. LLeit. A 2009)

Figure 1: (a) The fundamental interaction. (b) The “fish” diagram, which induces a

long-range interaction.

[Diagrami () gives the repulsive contact petential

[Diagrami (19) renermalizes the ternm andlintroduces;an attractive tail

that becomes long-range When




The existence ofi two qualitatively diffierent interaction terms suggests to start (in
the cutoff theory) from the noen-local action

S = / d* %Bﬁﬁl MNP + / d*x / dty lI’EI:fL::]E..T (x — y]@lz{;y:},

Where
By replacing

the inverse h-field propagater Is

In thirs way/ (ly averding deuble counting ol the effects of; and

)ione cani defiine an alternative RG expansion as in theorny/ With two

coupling constantsi(e.g. asiin scalar @ED): Tihisianalysis eliminates; the
gualitative conflict between one-loop effiective poetential and 1ts RG-1mpreved

result,




Trhe taill effect Is an Infrared efffiect therefiore, as in the standard perturbative
treatment of contact interactions, the continuum limit 1s “trvial’. Trhis means
that the prepagator ecomes free-field. IHewever, due to the presence ofi the
Infrared tanl, there are deviations 1n an' infinitesimal region near p=0i(tnat
Vanishesiin a strict continuum: limit),, 1.e

Tiherefore; for ajlange but fiinite cutolif; the theerny contains alseian
Infinitesimal inifrared scale Where deviations firom massive! free-field Behavior
Slow, up.




Summanizing

Tihe generall analysis of: SSBi shiows, that, beyend the simplest perturbative appreximation,

: IS not so simply. related to the: Higgs particle massibut Is a twoe=vallied function
which alserincludes the selution as I massless; tieery.

Stevensen:s analysis sliews that, dueite the “trviality” of the thearny i 4 space-time
dimensioens; deviations from: a firee-field behaviour (for thecontintium theory) can anly,
eccurat p=0;, which defines a Lerentz-Invamnant sulset

0K large but finite UV cutofif; thetwosvallednatire off € sliggests that besIces
the Higgs particle. mass, one shiould alserintreduce. a new: “inirared™ scale

and coensider therfermi (IM.C. PLB 2009)

\Where
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Ulira-weak long range Interactions
A prepagator of the fierm

gIves an Instantanesus, potential mediated 0y,

By using the general properties ofi the Fourer: transformithis gives
aniultra-weaksasympioetic 1/r potential

that Vanishes inithe contimuumeinmit Where

Consistency Withiexperiments gIves a confidence area In the
plane




Conclusions

Some. numerical and analytic arguments stggest that the; standara
IH1ggs hesen| IsiNOIF a genuine massive field

Iihe main; peInt IS that, eyend perturnation theery, G (p=0)ris a
woe-valUed function I the presence o SSB

IHOWeVEr, It the effective scalar self=interaction is “trvial™, in tne
contiuume limit the prepagatoer has: to; hecome firee-field fior all
PUL NON-ZENe MOmEenta.

FoiE lange; pUb finiter ultraviolet cutofit; from: a phencmenclogical
poInt: off VIEW, ONE; EXPECES Iong-range: ultra-Weak: Interactions
WI0SE Strengti sheuld vanish for the: continuumitheony,

This Introduces: a new. form off Infrared-ultravielet connection
WITh' S energy. scales

suchi that \WHEN

Fhis shouldimotivate a new: generation of numerical simulations
on those very large 4D lattices (e.g. 10074) that are now
avallanle with'the present computer technoelogy.




