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Pioneering work appeared in papers by Lavoura and Silva in 1994 and by Botella and Silva in
1995. A beautiful exposition of these matters in G.C. Branco, L. Lavoura and J.P. Silva, CP
Violation (Oxford Univ. Press, 1999) inspired my work. In addition to these authors, | have
also been greatly influenced by the work of A. Barroso, W. Bernreuther, P.M. Ferreira, |.F.
Ginzberg, B. Grzadkowski, I.P. lvanov, M. Krawcyzk, E. Ma, M. Maniatis, O. Nachtmann,
F. Nagel, C.C. Nishi, P. Osland, M.N. Rebelo, R. Santos, J.A. Silva-Marcos, and A. von
Manteuffel.
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Motivation for the basis-independent formalism

Consider the most general 2HDM potential,

V=m?®ld +mi,®®, — [m?,®d; + h.c.] 4+ Ir (2D))
X2 (B]D2)” + A3 (D1 @1) (D1®2) + Aa (@] Do) (2 P1)

+ {%A5(¢I¢2)2 + [>\6((I)I(I>1) + A?((D;(Ib)] O] Dy + h°C'} :

In a general 2HDM, ®; and P, are indistinguishable fields. A basis change consists of
a global U(2) transformation ®, — U, ;®, (and ®! = q)gUga). Note that the gauge-
covariant kinetic energy terms of the scalar fields are invariant with respect to U(2), whereas
the scalar potential squared-masses and couplings change under U(2) transformations and

thus are basis-dependent quantities.

Physical quantities that can be measured in the laboratory must be basis-independent.
Thus, any model-independent experimental study of 2HDM phenomena must employ basis-

independent methods for analyzing data associated with 2HDM physics.



Caveats

e The most general 2HDM contains large tree-level Higgs-mediated flavor-changing
neutral current (FCNC) and CP-violating effects, which are inconsistent with present
experimental data over a large range of the 2HDM parameter space. This can be

rectified by either
— fine-tuning of 2HDM parameters to reduce the size of the FCNC and CP-violating

effects below the experimentally allowed limits; or
— imposing additional symmetries (discrete and/or continuous) to eliminate tree-level
Higgs-mediated FCNCs and CP-violation. The latter can distinguish between $; and

®,, in which case a choice of basis acquires physical significance.

e Even if additional symmetries are present, they are typically broken, in which case
the effective low-energy 2HDM will contain all possible terms consistent with gauge
invariance. In this case, the most general 2HDM applies and basis-independent methods

are again required.

e Ideally, one would like to use a model-independent analysis to determine which additional
symmetries (broken and unbroken) are present. Here again, the basis-independent

methods provide a powerful framework for the experimental studies of 2HDM phenomena.



‘ Two approaches to 2HDM studies I

1. Work directly with the 2HDM scalar fields

The scalar potential can be rewritten in U(2)-covariant notation:

V=Y 0ld, + 1 7Z,5.4(010y) (D)

where Z ;.7 = Z.3,5 and hermiticity implies Y,; = (Ysa)™ and Z ;.5 = (Zbadz)”. The
barred indices help keep track of which |nd|ces transform with U and which transform
with U'. For example, Y,; — Ua:Y U and Z,5.5 — UaéUJr UesU - Z ¢ fon

The vacuum expectation values of the two Higgs fields can be parametrized as

v 0 ; Cﬂ
db,) = — : with U, = e . :
(%a) \/§< Uy ) ( Sg et >

where v = 246 GeV and 7 is arbitrary. Consider the hermitian matrix V_; = 0,0; with

orthonormal eigenvectors ¥y, and W, = V. €q. Under a U(2) transformation,

Vg — Uy, f&?a—>e_XUbwb, where e”* = det U .



That is, W, is a pseudo-vector with respect to U(2). One can use w, to construct a
proper second-rank tensor: W, ; = w.w; = d,;5 — V3. Moreover tan 8 = sg/cg is

basis-dependent, and hence is not in general a physical parameter.

All 2HDM observables must be invariant under a basis transformation ®, — U ;®P.

Examples of invariants (which must be real) and potentially complex pseudo-invariants:

Yi=Tr (YV), Yo = Tr (YW), Y; = Y, ; 0, Wy,

Z1 = Zggeq VeaVie Zy = Zygeqg WeaWae Z3 = Zygeq VeaWae
— P Nk N Nk~

Zy = Zgeqg VeeWaa 25 = Zypeq Vs Wy U; Wy ,
_ K AN Ak A~ - Nk A~ ~k ~

Z6 — ZchJva Vp UV Wq Z7 = ZchJva Wp W; Wy -

The pseudo-invariants above transform as

Y3, Zg, Z7] — e X[Y3, Zs, Z7] and Z5 — e *XZj.

Physical quantities must be invariants. For example, the charged Higgs boson mass
IS mzi = Y5 + %ng2. The potential minimum conditions, Y; = —%Z1v2 and
Ys = —%Z(;’UQ, are covariant conditions with respect to U(2). Pseudo-invariants are useful

because one can always combine two such quantities to create an invariant.



‘ The Higgs basis I

Define new Higgs doublet fields:
H, = (H{ , H) =70.%,, H, = (H , H)) = 0. ®, .

Equivalently, ®, = H,v, + Hsw,. It follows that

<H1>:E7 (H,) =0.

Under a U(2) transformation, H is invariant, whereas Hy — eXH,. That is, the Higgs

basis is define uniquely up to a possible rephasing of Hs.

In the Higgs basis, the scalar potential is given by:

V =Y HH, + YoH Hy + [Y3HIHy + h.c.] 4+ 12, (H] H,)?
+1Z,(HYH,)® + Zs(H| Hy)(H}Hy) + Zy(H{ Hy)(H} Hy)

* {%ZS(HIH2)2 ™ [Z6(H1TH1) + Z7(H§H2)] HIHz + h.c.} ,

which provides an interpretation for the (pseudo-)invariants Y1, Y5 Y3, Z1, Zo, ..., Z7.



2. Work with gauge-invariant Higgs field bilinears:

One can define SU(2), xU(1)y gauge invariant scalar field bilinears:
Ko=® d + &1y, K, =®®, + &ld,
Ky =i®ld, — idld,, Ks;=dl®, — dla,,
and define the row vector K= = (Ko, K). The scalar potential can be rewritten as:
V=K Eé+K EK
in terms of a real column vector é of squared-mass parameters and a real symmetric 4 X 4

matrix E of coupling parameters,

é: (fo) ’ B — (7700 "7T> .
3 n E

Under a basis transformation, Ky, &y and g are invariant, whereas {K , £, n} and E

transform as three-dimensional Cartesian vectors and a second-rank tensor, respectively:
{K,¢,nt— RU{K,¢, nt, E— RUERU),

where Rg,(U) = iTr (UTo,Uoy) € SO(3). Basis independent quantities are

easily obtained.



Applications of basis-independent methods

Extracting basis-invariant couplings from 2HDM observables
Existence of additional symmetries of the 2HDM scalar potential

CP-violating effects in the Higgs potential

— CP-transformation properties of neutral Higgs states
— Potential CP-violation in the Higgs self-interactions

— Distinguishing between explicit and spontaneous CP-violation
CP-violating effects in neutral Higgs—fermion interactions

New sources of custodial symmetry breaking



‘ The Higgs mass-eigenstate basis I

The three physical neutral Higgs boson mass-eigenstates are determined by
diagonalizing a 3 X 3 real symmetric squared-mass matrix that is defined in
the Higgs basis The diagonalizing matrix is a 3 X 3 real orthogonal matrix

that depends on three angles: 615, 613 and 623. Under a U(2) transformation,
015, 015 are invariant, and %23 — (det U)_lew%.
One can express the mass eigenstate neutral Higgs directly in terms of the

original shifted neutral fields, 3 = <I>2 — v@a/ﬁ:

a

1 = ~ ~ —9 k k k Nk g —0
i = =5 {(I)aT(QIclfUa T qr2We€ 2923) + (q105 + qk2wa62923)¢a} ’

V2

for k=1,....4, where hy = G°.



The tnvariant quantities qiy are given by:

k dk1 qK2

1 C12C13 —812 — 1€12513
2 $12€13 C12 — 1512513
3 S13 1C13

4 ) 0

The gy are functions of the angles 612 and 013, where ¢;; = cos 6, and s;; = sin 0;;.

Since wW,e~ %23 is a proper U(2)-vector, we see that the neutral mass-
eigenstate fields are indeed invariant under basis transformations.” Inverting

the previous result yields:

G+ .+ H+

¢CL — v 4
f f Z leva + Qk26_w23wa) hk

*Likewise, €923 HT and its charge conjugate are U(2)-invariant fields.



The gauge boson—Higgs boson interactions

g
2CW

BV = (ngWJ_W’u T4 mZZMZ'“> Re(qj)hy, + emyy AF(W,F G~ +w, G™)

2 _ _
—ngsWZ'UJ(W[L'_G + Wy, G+),

2
1 2,4+ — g

‘W

Re(q;1a51 + 9;24%2) hjhg

2
1 20 tvb— o 24 a9 (1 2N\2, u 29¢ /1 2 7 [P T
‘|‘|:§g WEwH ™ 4 e?a,A +CT(§—Sw) Zpzt + == (3 - siy) Auzt | (GTGT +HTHT)

2 2
1 + 9 °w + - —i093 17—
+{ (269A'LLWM — 27ZMWM ) (qp1G~ +agoe 23H )hy + h.c.} ,

‘W

g
‘w

* * < 1 cx —2 —10 —<2 U
LvHH = . m(g1951 + qj2432) 2" hj By by, — Qg{zW’u [qle 0" hy +qgge 23H 9 hk] + h.c.}

i < - e
—|—[ieA’u—|—$(%—s%V)Z’u] (GT 8, G +HT S, H).



The cubic and quartic Higgs couplings

—246
3}, = —gv hjhghy {%1(17513@(%1)21 + aj2apo Re(ag1)(Z3 + Z4) + Re(qj1ap2002Z5 ¢~ =" 23)
+Re([2 4 at a0 Z e 1923 4 Re(q Z- ¢ 1023)
451 T 9511919246 € e\q529K29¢247 €
+ ~— —i693 + —i693
—vhpG"G |Re(qp1)Z1 + Re(qpae Zg)| +vhpH"H |Re(q1)Z3 + Re(qpoe Z7)

—%’U hk{G_H—i_ 1023 [qZQZ4 + qio e_2i923Z5 + 2Re(q1.1)Z¢ e_i923] + h.c.} ,

Lh = —%hjhkhlhm [le%lfIEq;nZl + 4j20529029m2%2 + 2419151 9029m2(Z3 + Z4)
+2Re(q}1f1902am2%5 € 2 023) + 4Re(qj1451 )1 amaZg e 23) + ARe(a]1apaapadmaZr e 023)
—$hjhGTGT {%1‘12121 +4joakoZ3 + 2Re(q;1452%6 e_w23)]
—ghjhyH H™ {qj2qZ2Z2 + 4514123 + 2Re(q;143227 6_i923)]
—%hjhk{G_HJr 23 [q;10f0 74 + af1ak2Z5 €023 + g 1051 Zg e 023 + ajoafaZr e 023 + h'C'}
~320\GTGTGTGT — 4z T HTHTHT — (Z3+ Z)GTGTHTH™

—S(ZsHTHTGTGT +ZiH H GTGN) ~GtG T (ZgHT G + z{H GT) - HTH (Z;HTG™ +ziH GT).



Possible symmetries of the 2HDM

Symmetries are often imposed on the general 2HDM to satisfy various phenomenological

requirements. This requires a basis-independent catalog of all possible allowed symmetries,

first achieved by I.P. lvanov.

designation Higgs flavor symmetry group maximal symmetry group
7o Loy Lo @ Lo
Peccei-Quinn U(1) 0(2)
SO(3) SO(3) O(3)
CP1 — Lo
CP2 Lo Q Lo Lo @ Lo @ Zio
CP3 0(2) 0(2)®2Zs

The table above lists the possible Higgs flavor groups and corresponding maximal symmetry
groups [orthogonal to the global U(1)y hypercharge] of the scalar sector of the 2HDM."
CP1 is the standard CP symmetry, while CP2 and CP3 are generalized CP symmetries,

which take the form ®, — X, ®;, for unitary X that is also symmetric, antisymmetric or
neither for CP1, CP2 and CP3, respectively.
TP.M. Ferreira, H.E. Haber and J.P. Silva, Phys. Rev. D79 (2009) 116004; D82 (2010) 016001.




symmetry class constraints on £ and n eigenvalues of F

7o Exé=nmnxé=0;(&,n) # (0,0) non-degenerate
or or
eExeée =nxé =0;&n)#0,0) doubly-degenerate
U(1) EXeé=mxée=0;(&mn) #(0,0) doubly-degenerate
or or
EXn=0;(&n) #(0,0) triply-degenerate
SO(3) (&,m) = (0,0) triply-degenerate
CP1 & X m is an eigenvector of F unconstrained
or or
EXnN=0,&-é=mn-é€=0;(&,1n) # (0,0); non-degenerate

neither € nor 7 is an eigenvector of E
or or
EXn=0¢.&=mn-&=0;(&,1n)#(0,0); doubly-degenerate
neither € nor 7 is an eigenvector of E
CP2 (&,m) = (0,0) non-degenerate
CP3 (&,m) = (0,0) doubly-degenerate

The symmetry classes and the corresponding constraints on the scalar potential parameters. The unit vector € is one of the three
eigenvectors of F/ corresponding to a non-degenerate eigenvalue of E, and the unit vector é’ is an eigenvector of E/ corresponding
to a doubly-degenerate eigenvalue of E. For further details, see P.M. Ferreira, H.E. Haber, M. Maniatis, O. Nachtmann and
J.P. Silva, Int. J. Mod. Phys. A26 (2011) 769. The hierarchy of 2HDM symmetry classes can be exhibited by the following chain:

U(1)

CP1 < ZQ <
CP2

} < CP3 < SO(3).



‘ Conditions for a CP-conserving Higgs scalar sector I

Explicit CP conservation means that the Higgs potential exhibits (at least) a
CP1 symmetry. This implies that E, £ and 7 satisfy one of the possible set
of constraints listed on the previous table. Equivalently, the necessary and
sufficient conditions for an explicitly CP-conserving 2HDM scalar potential
consist of the (simultaneous) vanishing of the imaginary parts of four

potentially complex invariants:

Iysz =Im(Z (1)2(1)Zbechda) ;
Iry2z = Im(Y, deade(l))

oz = Im( abch(l)Z(l)Zfangkjngnth> )
I3y37z = Im( ZyevalcedgLeh fqY ga ¥ npY g f) ;

where ZC(LZ—) = 0veZybed = Zappg- |f these four invariants vanish, then there

exists a real basis in which all scalar potential parameters are real.



If both the scalar potential and the Higgs vacuum are CP-conserving, then

the invariant conditions are much simpler:
Im (Z:Z5) =1Im (Z:Z3) =1Im (Z;Z7) =0,

which are equivalent to conditions first obtained by Lavoura and Silva and by
Botella and Silva. In this case a real Higgs basis exists where Y3, Z5, Zg and
Z7 are real (as the scalar potential minimum condition fixes Y3 = —%Z6v2).
Moreover, the interactions of the Higgs bosons with themselves and with

the gauge bosons are be CP-conserving, and the neutral Higgs bosons are
eigenstates of CP (with CP-even 1" and H® and CP-odd AY).

The coefficients of the scalar potential in the Higgs basis (Y1, Y> Y3, 77,
Za, ..., Z7) can be used to evaluate Iysyz, Ioyoz, Isz and I3ysyz. If these
quantities are all real but Im (Z:Z%) = Im (Z:Z%) = Im (Z;Z7) = 0 is
not satisfied, then CP is spontaneously broken. Namely, no real basis exists

where the Higgs vacuum expectation values are both real.



‘ The Higgs-fermion Yukawa couplings |

The Yukawa Lagrangian, in terms of the quark mass-eigenstate fields, is:
— Ly = UV Ur+D K - 0V Upr+U K& P T Dr+D 8% "Dr+h.c.

where @, = (&DO, CTD_) = 102®> and K is the CKM mixing matrix. The
U,D

n are 3 X 3 Yukawa coupling matrices. It is convenient to write:
N = k%, +p%0W, = kY=0Y¢ and p%=win?, (Q=U or D).

Under a U(2) transformation, k€ is invariant, whereas p% — (det U)p¥.

U

By construction, Y and x” are proportional to the (real non-negative)

diagonal quark mass matrices My and Mp, respectively, whereas the

matrices pV and p” are independent complex 3 x 3 matrices. In particular,

v
MU:—K’U:diag(mua m07mt)7 MD:—K)DT:

V2 V2

diag(mg, ms, mp) .



The fermion—Higgs boson interactions

The final form for the Yukawa couplings of the mass-eigenstate Higgs bosons

and the Goldstone bosons to the quarks is [with Pr r = 2(1 F 7;)]:

1= * v 7 * 1
— Ly = ;D{MD(%PR + g Pr) + NG (g2 e “25pPTPr + qfq e 923PDPL] }thz

TT * v * 7 )
U{MU(qMPL + g3 Pr) + 7 (G0 €72 p" PR + quz [ 97 ] T PL }Uhk

_ 2 __
+{U K[p""Pr— [p"I'"KPL] DHT + % U[KMpPr — MyKPr) DG' + h.c.}

_|_

S| =

Since €23 HT and the hy, are invariant fields, .2 depends only on invariant
quantities: the matrices Mg and p%e23 and the invariant angles 05 and ;5.

The unphysical parameter tan 5 does not appear.

The couplings of the neutral Higgs bosons to quark pairs are generically
CP-violating due to the fact that the gy and the matrices e??23p% are not

generally either pure real or pure imaginary.



Additional symmetries in the Higgs-fermion interactions

A general 2HDM exhibits CP-violating neutral Higgs boson couplings to
fermions and tree-level FCNCs mediated by neutral Higgs boson exchanges.
These effects can be removed by symmetry. Once again, a basis-independent
formulation of such symmetries are useful (as these could be extracted in

principle from experimental data).

e Condition for CP-conserving neutral Higgs—fermion interactions:
Z5(p®)?, Zgp® and Z;p® are real matrices (Q = U, D and E).

Remark: CP symmetry cannot be exact due to the unremovable phase in

the CKM matrix that enters via the charged current interactions mediated
by either W= HT or G* exchange.



e Type-l and Type-ll Higgs-fermion interactions

D U
eamfng — Cabllg Tng f= 0, type-1,
D
Sapn MY =0, type-II,

which can be implemented with a Zy symmetry (with appropriate choices
for the transformations of the scalar and fermion fields). In both cases
p? Mg (for @ = U, D). Hence, there are no off-diagonal neutral Higgs—
fermion couplings. The Type-lI and Type-ll conditions can be implemented
via discrete symmetries (or supersymmetry), which distinguish the two

(otherwise identical) Higgs doublets.

For example, in a Type-ll model, tan 3 is the ratio of the neutral Higgs
vacuum expectation values in the special basis in which n{ = nf = 0.

Indeed, tan 3 has been promoted to a physical (invariant) parameter,

tan 8 = BL\/i’Tr (pDMl;l)’.



‘ Custodial symmetry in the 2HDM I

In the Standard model, the scalar sector exhibits a global SU(2),xSU(2)r
symmetry that is violated only by hypercharge gauge interactions and the
Higgs-fermion Yukawa couplings. In the custodial symmetric limit the
electroweak p-parameter,

miy

=1
P m?, cos Oy ’

to all orders in perturbation theory. Including the breaking effects generate

finite radiative corrections to p = 1.

Pomarol and Vega studied the implications of custodial symmetry for the
2HDM in 1994. They identified two separate realizations, but failed to
realize that their two cases were actually related by a change of Higgs basis
(also noted recently by B. Grzadkowski, M. Maniatis and J. Wudka). Clearly,

basis-independent methods can be valuable here.



Define the 2 X 2 matrices Ml; and M, with columns made up of Higgs-basis
fields,

Ml = [’iUgHik, Hl] , Mg = [iUg(@iXHQ)*, eiXHQ} ,

where Y reflects the phase freedom in defining the Higgs basis. Under a
global SU(2);,xSU(2) R transformation, M; — LM R (i = 1,2), where L,
R € SU(2). The vacuum preserves the diagonal SU(2) custodial symmetry
(corresponding to L = R), since (M) = (v/v/2)12x2 and (M) = 0. Then,
imposing the SU(2)z xSU(2) g symmetry on the scalar potential in the Higgs

basis yields:
Zy = Zse #X | Im(Yze™™X) = Im(Zge™X) = Im(Zre~X) = 0.
Because Z, is real, it follows that Im(Z:Y3) = Im(Z2Z%) = Im(Z:Z2) = 0.

That is, custodial symmetry implies that the Higgs scalar potential is CP-

conserving.



The corresponding basis-independent conditions for custodial symmetry are:

)
Re(Z¥ 7?2 ,
‘(265‘2 6) = 656‘25‘, 1f Z6 % O,
_ ) Re(ZrZ2 ,
Za =9 ‘(25‘27)=e57\z5\, if Z; #0,
\:|:|Z5|, ifYs=Zg=7-=0.

In a real Higgs basis where Zg or Z7 is non-zero, €54 = €57 = sgn Zs, in

which case custodial symmetry implies that Z, = Z5* and my+ = ma.

In contrast, if Y3 = Zg = Z7 = 0, then one is free to transform Hy — 1Ho
so that the sign of Z5 is not physical. Moreover, the neutral Higgs spectrum
consists of one CP-even Higgs boson with Standard Model couplings and
two neutral states, h, and h; with opposite-sign CP but whose absolute CP

quantum numbers cannot be determined from the bosonic sector.

 The sign of Z5 is invariant under an O(2) transformation between any two real bases.



If we include the effects of the Higgs-fermion interactions, then the absolute
CP-quantum numbers of h, and h; can be determined. In fact, these states
may not be eigenstates of CP due to possible CP-violation in the Yukawa

couplings, which can arise even in the custodial limit where
MU _ MD ’ (6i923pD)T _ 6i923pU ’

Indeed, these conditions do not impose CP-conservation on the neutral
Higgs-fermion interactions (since the latter requires that e*?23pY | %923 pP are

both either real or pure imaginary matrices).

Thus, for the case of Y5 = Zg = Z- = 0 with custodial symmetry, H* is
mass-degenerate with a neutral scalar that is CP-even, CP-odd or a state
of indefinite CP, depending on whether €?923p? is real, purely imaginary or

complex.’

5The case of HT degenerate in mass with a CP-even scalar was the twisted scenario of Gerard and

Herquet, although its origin is clearer in the basis-independent approach.



If the custodial symmetry is violated, then one-loop radiative corrections can
shift the tree-level result of p = 1. Denoting aT' = dp = p — 1, we find that
the contribution of a general (possibly CP-violating) Higgs sector to the T
parameter is given by the basis independent result:

2 3
g . .
ol = 20 2 Z |qk2|2F(mi, m?{i) - qilF(m?, m?) +O(9,2) , 1#JFk,
64mmi;, —

where my, = my,, and

Fla,y) =@ +y) = = n(efy),  Flz)=0.

This result is consistent with a previous computation of Grimus, Lavoura,
Ogreid and Osland. Basis-independent expressions for the S and U

parameters have also been obtained by Haber and O’Neil.



The general 2HDM parameters are constrained mainly by T'.

In the decoupling limit, the lightest Higgs mass is constrained in the same manner as in
the SM.

Away from the decoupling limit, regions exist in which the lightest Higgs boson can be

significantly heavier than the SM Higgs boson.

Away from the decoupling limit, the largest allowed mass-splitting between H¥ and the

CP-odd Higgs boson occurs before reaching the unitarity limits of the Higgs couplings.



‘ Lessons for future work I

e Basis-independent methods provide a powerful technique for studying the

theoretical structure of the two-Higgs doublet model.

e These methods provide insight into the conditions for CP-conservation (and
violation), as well as other symmetries of the 2HDM that can distinguish

between the two Higgs doublets.

e The basis-independent analysis also clarifies the conditions for custodial

symmetry and its breaking.

e It is now possible to perform a completely model-independent scan of
the 2HDM parameter space. Constraints on this parameter space due to
precision electroweak measurements can be obtained, and provide a possible

method for avoiding a Higgs boson mass below 200 GeV.



