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Pioneering work appeared in papers by Lavoura and Silva in 1994 and by Botella and Silva in
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Motivation for the basis-independent formalism

Consider the most general 2HDM potential,
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In a general 2HDM, Φ1 and Φ2 are indistinguishable fields. A basis change consists of

a global U(2) transformation Φa → Uab̄Φb (and Φ†
ā = Φ†

b̄
U†

bā). Note that the gauge-

covariant kinetic energy terms of the scalar fields are invariant with respect to U(2), whereas

the scalar potential squared-masses and couplings change under U(2) transformations and

thus are basis-dependent quantities.

Physical quantities that can be measured in the laboratory must be basis-independent.

Thus, any model-independent experimental study of 2HDM phenomena must employ basis-

independent methods for analyzing data associated with 2HDM physics.



Caveats

• The most general 2HDM contains large tree-level Higgs-mediated flavor-changing

neutral current (FCNC) and CP-violating effects, which are inconsistent with present

experimental data over a large range of the 2HDM parameter space. This can be

rectified by either

– fine-tuning of 2HDM parameters to reduce the size of the FCNC and CP-violating

effects below the experimentally allowed limits; or

– imposing additional symmetries (discrete and/or continuous) to eliminate tree-level

Higgs-mediated FCNCs and CP-violation. The latter can distinguish between Φ1 and

Φ2, in which case a choice of basis acquires physical significance.

• Even if additional symmetries are present, they are typically broken, in which case

the effective low-energy 2HDM will contain all possible terms consistent with gauge

invariance. In this case, the most general 2HDM applies and basis-independent methods

are again required.

• Ideally, one would like to use a model-independent analysis to determine which additional

symmetries (broken and unbroken) are present. Here again, the basis-independent

methods provide a powerful framework for the experimental studies of 2HDM phenomena.



Two approaches to 2HDM studies

1. Work directly with the 2HDM scalar fields

The scalar potential can be rewritten in U(2)-covariant notation:

V = Yab̄Φ
†
āΦb +

1
2Zab̄cd̄(Φ

†
āΦb)(Φ
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where Zab̄cd̄ = Zcd̄ab̄ and hermiticity implies Yab̄ = (Ybā)
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∗. The

barred indices help keep track of which indices transform with U and which transform

with U†. For example, Yab̄ → Uac̄Ycd̄U
†
db̄
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†
fb̄
UcḡU

†
hd̄
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The vacuum expectation values of the two Higgs fields can be parametrized as
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v√
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)
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where v = 246 GeV and η is arbitrary. Consider the hermitian matrix Vab̄ ≡ v̂av̂
∗
b̄ with

orthonormal eigenvectors v̂b and ŵb ≡ v̂ ∗
c̄ ǫcb. Under a U(2) transformation,

v̂a → Uab̄v̂b , ŵa → e−iχ Uab̄ ŵb , where eiχ ≡ det U .



That is, ŵa is a pseudo-vector with respect to U(2). One can use ŵa to construct a

proper second-rank tensor: Wab̄ ≡ ŵaŵ
∗
b̄ ≡ δab̄ − Vab̄. Moreover tan β ≡ sβ/cβ is

basis-dependent, and hence is not in general a physical parameter.

All 2HDM observables must be invariant under a basis transformation Φa → Uab̄Φb.

Examples of invariants (which must be real) and potentially complex pseudo-invariants:

Y1 ≡ Tr (Y V ) , Y2 ≡ Tr (Y W ) , Y3 ≡ Yab̄ v̂
∗
ā ŵb ,

Z1 ≡ Zab̄cd̄ VbāVdc̄ , Z2 ≡ Zab̄cd̄ WbāWdc̄ , Z3 ≡ Zab̄cd̄ VbāWdc̄ ,
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The pseudo-invariants above transform as

[Y3, Z6, Z7] → e−iχ[Y3, Z6, Z7] and Z5 → e−2iχZ5 .

Physical quantities must be invariants. For example, the charged Higgs boson mass

is m2
H± = Y2 + 1

2Z3v
2. The potential minimum conditions, Y1 = −1

2Z1v
2 and

Y3 = −1
2Z6v

2, are covariant conditions with respect to U(2). Pseudo-invariants are useful

because one can always combine two such quantities to create an invariant.



The Higgs basis

Define new Higgs doublet fields:
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Under a U(2) transformation, H1 is invariant, whereas H2 → eiχH2. That is, the Higgs

basis is define uniquely up to a possible rephasing of H2.

In the Higgs basis, the scalar potential is given by:
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which provides an interpretation for the (pseudo-)invariants Y1, Y2 Y3, Z1, Z2, . . . , Z7.



2. Work with gauge-invariant Higgs field bilinears:

One can define SU(2)L×U(1)Y gauge invariant scalar field bilinears:

K0 = Φ
†
1Φ1 + Φ

†
2Φ2, K1 = Φ

†
1Φ2 + Φ

†
2Φ1,

K2 = iΦ†
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2Φ2,

and define the row vector K̃
T
= (K0 , K). The scalar potential can be rewritten as:

V = K̃
T
ξ̃ + K̃

T
Ẽ K̃

in terms of a real column vector ξ̃ of squared-mass parameters and a real symmetric 4× 4

matrix Ẽ of coupling parameters,

ξ̃ =

(
ξ0

ξ

)
, Ẽ =

(
η00 ηT

η E

)
.

Under a basis transformation, K0, ξ0 and η00 are invariant, whereas {K , ξ , η} and E

transform as three-dimensional Cartesian vectors and a second-rank tensor, respectively:

{K , ξ , η} → R(U){K , ξ , η} , E → R(U)ER(U)
T
,

where Rab(U) ≡ 1
2Tr (U†σaUσb) ∈ SO(3). Basis independent quantities are

easily obtained.



Applications of basis-independent methods

• Extracting basis-invariant couplings from 2HDM observables

• Existence of additional symmetries of the 2HDM scalar potential

• CP-violating effects in the Higgs potential

– CP-transformation properties of neutral Higgs states

– Potential CP-violation in the Higgs self-interactions

– Distinguishing between explicit and spontaneous CP-violation

• CP-violating effects in neutral Higgs–fermion interactions

• New sources of custodial symmetry breaking



The Higgs mass-eigenstate basis

The three physical neutral Higgs boson mass-eigenstates are determined by

diagonalizing a 3× 3 real symmetric squared-mass matrix that is defined in

the Higgs basis The diagonalizing matrix is a 3 × 3 real orthogonal matrix

that depends on three angles: θ12, θ13 and θ23. Under a U(2) transformation,

θ12 , θ13 are invariant, and eiθ23 → (det U)−1eiθ23 .

One can express the mass eigenstate neutral Higgs directly in terms of the

original shifted neutral fields, Φ
0
a ≡ Φ0

a − vv̂a/
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for k = 1, . . . , 4, where h4 = G0.



The invariant quantities qkℓ are given by:

k qk1 qk2

1 c12c13 −s12 − ic12s13

2 s12c13 c12 − is12s13

3 s13 ic13

4 i 0

The qkℓ are functions of the angles θ12 and θ13, where cij ≡ cos θij and sij ≡ sin θij.

Since ŵae
−iθ23 is a proper U(2)-vector, we see that the neutral mass-

eigenstate fields are indeed invariant under basis transformations.∗ Inverting

the previous result yields:
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∗Likewise, eiθ23H+ and its charge conjugate are U(2)-invariant fields.



The gauge boson–Higgs boson interactions
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The cubic and quartic Higgs couplings
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Possible symmetries of the 2HDM

Symmetries are often imposed on the general 2HDM to satisfy various phenomenological

requirements. This requires a basis-independent catalog of all possible allowed symmetries,

first achieved by I.P. Ivanov.

designation Higgs flavor symmetry group maximal symmetry group

Z2 Z2 Z2 ⊗ Z2

Peccei-Quinn U(1) O(2)

SO(3) SO(3) O(3)

CP1 — Z2

CP2 Z2 ⊗ Z2 Z2 ⊗ Z2 ⊗ Z2

CP3 O(2) O(2)⊗Z2

The table above lists the possible Higgs flavor groups and corresponding maximal symmetry

groups [orthogonal to the global U(1)Y hypercharge] of the scalar sector of the 2HDM.†

CP1 is the standard CP symmetry, while CP2 and CP3 are generalized CP symmetries,

which take the form Φa → XabΦ
∗
b̄, for unitary X that is also symmetric, antisymmetric or

neither for CP1, CP2 and CP3, respectively.
†P.M. Ferreira, H.E. Haber and J.P. Silva, Phys. Rev. D79 (2009) 116004; D82 (2010) 016001.



symmetry class constraints on ξ and η eigenvalues of E

Z2 ξ × ê = η × ê = 0; (ξ,η) 6= (0, 0) non-degenerate

or or

ξ × ê′ = η × ê′ = 0; (ξ,η) 6= (0, 0) doubly-degenerate

U(1) ξ × ê = η × ê = 0; (ξ,η) 6= (0, 0) doubly-degenerate

or or

ξ × η = 0; (ξ,η) 6= (0, 0) triply-degenerate

SO(3) (ξ,η) = (0, 0) triply-degenerate

CP1 ξ × η is an eigenvector of E unconstrained

or or

ξ × η = 0; ξ · ê = η · ê = 0; (ξ,η) 6= (0, 0); non-degenerate

neither ξ nor η is an eigenvector of E

or or

ξ × η = 0; ξ · ê′ = η · ê′ = 0; (ξ,η) 6= (0, 0); doubly-degenerate

neither ξ nor η is an eigenvector of E

CP2 (ξ,η) = (0, 0) non-degenerate

CP3 (ξ,η) = (0, 0) doubly-degenerate

The symmetry classes and the corresponding constraints on the scalar potential parameters. The unit vector ê is one of the three

eigenvectors of E corresponding to a non-degenerate eigenvalue of E, and the unit vector ê′ is an eigenvector of E corresponding

to a doubly-degenerate eigenvalue of E. For further details, see P.M. Ferreira, H.E. Haber, M. Maniatis, O. Nachtmann and

J.P. Silva, Int. J. Mod. Phys. A26 (2011) 769. The hierarchy of 2HDM symmetry classes can be exhibited by the following chain:

CP1 < Z2 <

{
U(1)

CP2

}
< CP3 < SO(3) .



Conditions for a CP-conserving Higgs scalar sector

Explicit CP conservation means that the Higgs potential exhibits (at least) a

CP1 symmetry. This implies that E, ξ and η satisfy one of the possible set

of constraints listed on the previous table. Equivalently, the necessary and

sufficient conditions for an explicitly CP-conserving 2HDM scalar potential

consist of the (simultaneous) vanishing of the imaginary parts of four

potentially complex invariants:

IY 3Z ≡ Im(Z
(1)
ac̄ Z

(1)

eb̄
Zbēcd̄Ydā) ,

I2Y 2Z ≡ Im(Yab̄Ycd̄Zbādf̄Z
(1)
fc̄ ) ,

I6Z ≡ Im(Zab̄cd̄Z
(1)

bf̄
Z

(1)

dh̄
Zfājk̄Zkj̄mn̄Znm̄hc̄) ,

I3Y 3Z ≡ Im(Zac̄bd̄ZcēdḡZeh̄fq̄YgāYhb̄Yqf̄) ,

where Z
(1)

ad̄
≡ δbc̄Zab̄cd̄ = Zab̄bd̄. If these four invariants vanish, then there

exists a real basis in which all scalar potential parameters are real.



If both the scalar potential and the Higgs vacuum are CP-conserving, then

the invariant conditions are much simpler:

Im (Z∗
5Z

2
6) = Im (Z∗

5Z
2
7) = Im (Z∗

6Z7) = 0 ,

which are equivalent to conditions first obtained by Lavoura and Silva and by

Botella and Silva. In this case a real Higgs basis exists where Y3, Z5, Z6 and

Z7 are real (as the scalar potential minimum condition fixes Y3 = −1
2Z6v

2).

Moreover, the interactions of the Higgs bosons with themselves and with

the gauge bosons are be CP-conserving, and the neutral Higgs bosons are

eigenstates of CP (with CP-even h0 and H0 and CP-odd A0).

The coefficients of the scalar potential in the Higgs basis (Y1, Y2 Y3, Z1,

Z2, . . . , Z7) can be used to evaluate IY 3Z, I2Y 2Z, I6Z and I3Y 3Z. If these

quantities are all real but Im (Z∗
5Z

2
6) = Im (Z∗

5Z
2
7) = Im (Z∗

6Z7) = 0 is

not satisfied, then CP is spontaneously broken. Namely, no real basis exists

where the Higgs vacuum expectation values are both real.



The Higgs-fermion Yukawa couplings

The Yukawa Lagrangian, in terms of the quark mass-eigenstate fields, is:

−LY = ULΦ̃
0
āη

U
a UR+DLK

†Φ̃−
ā η

U
a UR+ULKΦ+

a η
D †
ā DR+DLΦ

0
aη

D †
ā DR+h.c. ,

where Φ̃ā ≡ (Φ̃0 , Φ̃−) = iσ2Φ
∗
ā and K is the CKM mixing matrix. The

ηU,D are 3× 3 Yukawa coupling matrices. It is convenient to write:

ηQa = κQv̂a+ρQŵa =⇒ κQ ≡ v̂∗āη
Q
a and ρQ ≡ ŵ∗

āη
Q
a , (Q = U or D) .

Under a U(2) transformation, κQ is invariant, whereas ρQ → (det U)ρQ.

By construction, κU and κD are proportional to the (real non-negative)

diagonal quark mass matrices MU and MD, respectively, whereas the

matrices ρU and ρD are independent complex 3× 3 matrices. In particular,

MU =
v√
2
κU = diag(mu , mc , mt) , MD =

v√
2
κD † = diag(md , ms , mb) .



The fermion–Higgs boson interactions

The final form for the Yukawa couplings of the mass-eigenstate Higgs bosons

and the Goldstone bosons to the quarks is [with PL,R = 1
2(1∓ γ5)]:

−LY =
1

v
D

{
MD(qk1PR + q∗k1PL) +

v√
2

[
qk2 [e

iθ23ρD]†PR + q∗k2 e
iθ23ρDPL

]}
Dhk

+
1

v
U

{
MU(qk1PL + q∗k1PR) +

v√
2

[
q∗k2 e

iθ23ρUPR + qk2 [e
iθ23ρU ]†PL

]}
Uhk

+

{
U
[
K[ρD]†PR − [ρU ]†KPL

]
DH+ +

√
2

v
U [KMDPR −MUKPL]DG+ + h.c.

}
.

Since eiθ23H+ and the hk are invariant fields, LY depends only on invariant

quantities: the matricesMQ and ρQeiθ23 and the invariant angles θ12 and θ13.

The unphysical parameter tanβ does not appear.

The couplings of the neutral Higgs bosons to quark pairs are generically

CP-violating due to the fact that the qk2 and the matrices eiθ23ρQ are not

generally either pure real or pure imaginary.



Additional symmetries in the Higgs-fermion interactions

A general 2HDM exhibits CP-violating neutral Higgs boson couplings to

fermions and tree-level FCNCs mediated by neutral Higgs boson exchanges.

These effects can be removed by symmetry. Once again, a basis-independent

formulation of such symmetries are useful (as these could be extracted in

principle from experimental data).

• Condition for CP-conserving neutral Higgs–fermion interactions:

Z5(ρ
Q)2 , Z6ρ

Q and Z7ρ
Q are real matrices (Q = U , D and E).

Remark: CP symmetry cannot be exact due to the unremovable phase in

the CKM matrix that enters via the charged current interactions mediated

by either W±, H± or G± exchange.



• Type-I and Type-II Higgs-fermion interactions

ǫāb̄η
D
a ηUb = ǫabη

D †
ā ηU †

b̄
= 0 , type-I ,

δab̄ η
D †
ā ηUb = 0 , type-II ,

which can be implemented with a Z2 symmetry (with appropriate choices

for the transformations of the scalar and fermion fields). In both cases

ρQ ∝ MQ (for Q = U , D). Hence, there are no off-diagonal neutral Higgs–

fermion couplings. The Type-I and Type-II conditions can be implemented

via discrete symmetries (or supersymmetry), which distinguish the two

(otherwise identical) Higgs doublets.

For example, in a Type-II model, tan β is the ratio of the neutral Higgs

vacuum expectation values in the special basis in which ηU1 = ηD2 = 0.

Indeed, tanβ has been promoted to a physical (invariant) parameter,

tan β =
v

3
√
2

∣∣Tr
(
ρDM−1

D

)∣∣ .



Custodial symmetry in the 2HDM

In the Standard model, the scalar sector exhibits a global SU(2)L×SU(2)R

symmetry that is violated only by hypercharge gauge interactions and the

Higgs-fermion Yukawa couplings. In the custodial symmetric limit the

electroweak ρ-parameter,

ρ ≡ m2
W

m2
Z cos θW

= 1 ,

to all orders in perturbation theory. Including the breaking effects generate

finite radiative corrections to ρ = 1.

Pomarol and Vega studied the implications of custodial symmetry for the

2HDM in 1994. They identified two separate realizations, but failed to

realize that their two cases were actually related by a change of Higgs basis

(also noted recently by B. Grzadkowski, M. Maniatis and J. Wudka). Clearly,

basis-independent methods can be valuable here.



Define the 2× 2 matrices M1 and M2, with columns made up of Higgs-basis

fields,

M1 ≡ [iσ2H
∗
1 , H1] , M2 ≡

[
iσ2(e

iχH2)
∗ , eiχH2

]
,

where χ reflects the phase freedom in defining the Higgs basis. Under a

global SU(2)L×SU(2)R transformation, Mi → LMiR
† (i = 1, 2), where L,

R ∈ SU(2). The vacuum preserves the diagonal SU(2) custodial symmetry

(corresponding to L = R), since 〈M1〉 = (v/
√
2)12×2 and 〈M2〉 = 0. Then,

imposing the SU(2)L×SU(2)R symmetry on the scalar potential in the Higgs

basis yields:

Z4 = Z5e
−2iχ , Im(Y3e

−iχ) = Im(Z6e
−iχ) = Im(Z7e

−iχ) = 0 .

Because Z4 is real, it follows that Im(Z∗
5Y

2
3 ) = Im(Z∗

5Z
2
6) = Im(Z∗

5Z
2
7) = 0.

That is, custodial symmetry implies that the Higgs scalar potential is CP-

conserving.



The corresponding basis-independent conditions for custodial symmetry are:

Z4 =





Re(Z∗
5Z

2
6)

|Z6|2
= ǫ56|Z5| , if Z6 6= 0 ,

Re(Z∗
5Z

2
7)

|Z7|2
= ǫ57|Z5| , if Z7 6= 0 ,

±|Z5| , if Y3 = Z6 = Z7 = 0 .

In a real Higgs basis where Z6 or Z7 is non-zero, ǫ56 = ǫ57 = sgn Z5, in

which case custodial symmetry implies that Z4 = Z5
‡ and mH± = mA.

In contrast, if Y3 = Z6 = Z7 = 0, then one is free to transform H2 → iH2

so that the sign of Z5 is not physical. Moreover, the neutral Higgs spectrum

consists of one CP-even Higgs boson with Standard Model couplings and

two neutral states, ha and hb with opposite-sign CP but whose absolute CP

quantum numbers cannot be determined from the bosonic sector.
‡The sign of Z5 is invariant under an O(2) transformation between any two real bases.



If we include the effects of the Higgs-fermion interactions, then the absolute

CP-quantum numbers of ha and hb can be determined. In fact, these states

may not be eigenstates of CP due to possible CP-violation in the Yukawa

couplings, which can arise even in the custodial limit where

MU = MD , (eiθ23ρD)† = eiθ23ρU ,

Indeed, these conditions do not impose CP-conservation on the neutral

Higgs-fermion interactions (since the latter requires that eiθ23ρU , eiθ23ρD are

both either real or pure imaginary matrices).

Thus, for the case of Y3 = Z6 = Z7 = 0 with custodial symmetry, H± is

mass-degenerate with a neutral scalar that is CP-even, CP-odd or a state

of indefinite CP, depending on whether eiθ23ρQ is real, purely imaginary or

complex.§

§The case of H± degenerate in mass with a CP-even scalar was the twisted scenario of Gerard and

Herquet, although its origin is clearer in the basis-independent approach.



If the custodial symmetry is violated, then one-loop radiative corrections can

shift the tree-level result of ρ = 1. Denoting αT ≡ δρ = ρ− 1, we find that

the contribution of a general (possibly CP-violating) Higgs sector to the T

parameter is given by the basis independent result:

αT =
g2

64π2m2
W

[
3∑

k=1

|qk2|2F (m2
k,m

2
H±) − q2

k1F (m2
i ,m

2
j)

]
+O(g′ 2) , i 6= j 6= k ,

where mk ≡ mhk
and

F (x, y) ≡ 1
2(x+ y)− xy

x− y
ln(x/y) , F (x, x) = 0 .

This result is consistent with a previous computation of Grimus, Lavoura,

Ogreid and Osland. Basis-independent expressions for the S and U

parameters have also been obtained by Haber and O’Neil.
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• The general 2HDM parameters are constrained mainly by T .

• In the decoupling limit, the lightest Higgs mass is constrained in the same manner as in

the SM.

• Away from the decoupling limit, regions exist in which the lightest Higgs boson can be

significantly heavier than the SM Higgs boson.

• Away from the decoupling limit, the largest allowed mass-splitting between H± and the

CP-odd Higgs boson occurs before reaching the unitarity limits of the Higgs couplings.



Lessons for future work

• Basis-independent methods provide a powerful technique for studying the

theoretical structure of the two-Higgs doublet model.

• These methods provide insight into the conditions for CP-conservation (and

violation), as well as other symmetries of the 2HDM that can distinguish

between the two Higgs doublets.

• The basis-independent analysis also clarifies the conditions for custodial

symmetry and its breaking.

• It is now possible to perform a completely model-independent scan of

the 2HDM parameter space. Constraints on this parameter space due to

precision electroweak measurements can be obtained, and provide a possible

method for avoiding a Higgs boson mass below 200 GeV.


