Collider signatures of gauge-Higgs unification

Yutaka Hosotani, Osaka University

Scalars 2011 Warsaw, Poland, 26 August 2011

Hosotani, Tanaka, Uekusa, 1103.6076v2

Gauge-Higgs Unification in 5 dimensions

4-dim. components A_{μ}

extra-dim. component A_y

Hosotani 1983, 1989 Davies, McLachlan 1988, 1989 Hatanaka, Inami, Lim, 1998

Higgs boson as an AB phase in extra dim

$$e^{i \hat{ heta}_H(x)} \sim P \exp\left\{ig \int_C dy A_y
ight\}$$
 $\hat{ heta}_H(x) = heta_H + rac{H(x)}{f_H}$

$SO(5) \times U(1)$ in Randall-Sundrum warped space

$$ds^2 = e^{-2k|y|} dx_\mu dx^\mu + dy^2$$

 $0 \le |y| \le L = \pi R$

Agashe, Contino, Pomarol 2005 Hosotani, Sakamura 2006 Medina, Shah, Wagner 2007

4D gauge bosons and Higgs

$$P_0 = P_1 = egin{pmatrix} -1 & & & \ & -1 & & \ & & -1 & & \ & & & -1 & \ & & & +1 \end{pmatrix}$$

 $SO(5) \rightarrow SO(4) \simeq SU(2)_L \times SU(2)_R$

Y. Hosotani, Scalars 2011, 26 August 2011, - 5

$$\begin{array}{c} \hline \textbf{Effective interactions at low energies} \\ \\ \textbf{AB phase} \quad \hat{\theta}_{H} = \theta_{H} + \frac{H}{f_{H}} \quad f_{H} = \frac{2}{\sqrt{kL}} \frac{m_{KK}}{\pi g} \end{array}$$

$$egin{aligned} \mathcal{L}_{ ext{eff}} &\sim & -V_{ ext{eff}}(\hat{ heta}_{H}) \ & & -m_{W}(\hat{ heta}_{H})^{2}W_{\mu}^{\dagger}W^{\mu} - rac{1}{2}m_{Z}(\hat{ heta}_{H})^{2}Z_{\mu}Z^{\mu} \ & & -m_{f}(\hat{ heta}_{H})\,\overline{\psi}_{f}\psi_{f} \end{aligned}$$

Effective interactions at low energies
AB phase
$$\hat{\theta}_H = \theta_H + \frac{H}{f_H}$$
 $f_H = \frac{2}{\sqrt{kL}} \frac{m_{KK}}{\pi g}$
 $\mathcal{L}_{eff} \sim -V_{eff}(\hat{\theta}_H)$
 $-\left(\frac{1}{2}gf_H\sin\hat{\theta}_H\right)^2 \left\{ W^{\dagger}_{\mu}W^{\mu} + \frac{1}{2\cos^2\theta_W}Z_{\mu}Z^{\mu} \right\}$
 $-y_f f_H\sin\hat{\theta}_H \overline{\psi}_f \psi_f$

EW symmetry breaking by Hosotani mechanism

$$\theta_H = \frac{\pi}{2}$$

$$m_H = egin{smallmatrix} 135 \, {
m GeV} \ (z_L = egin{smallmatrix} 10^{15} \ 10^5 \ 10^5 \ \end{pmatrix}$$

$\begin{array}{ll} SO(5): & SO(4)\simeq SU(2)_L\times SU(2)_R & SO(5)/SO(4) \\ \\ \left\{ \begin{array}{l} T^{\alpha} \end{array} \right\} = & \left\{ \begin{array}{l} T^{a_L} \ , \ T^{a_R} \ , & T^{\hat{a}} \ , \ T^{\hat{4}} \end{array} \right\} \end{array}$

$$P_H: egin{array}{c} SU(2)_L \leftrightarrow SU(2)_R \ T^{\hat{4}}
ightarrow -T^{\hat{4}} \end{array}$$

Agashe, Contino, Da Rold, Pomarol 2006T parameter $Zb\overline{b}$

♦ $\theta_H = \frac{1}{2}\pi$ ⇒ Absence of single-Higgs production
Higgs pair production
Higgs = missing energy, momentum

 $\nu, \bar{\nu}$ background hard to confirm at LHC/ILC

Cheung, Song, 1004.2783, Alves, 1008.0016 YH, Tanaka, Uekusa, 1103.6076

♦ Precision measurements at low energies
 ♦ KK modes: Z⁽ⁿ⁾, γ⁽ⁿ⁾, t⁽ⁿ⁾,

Gauge couplings precision measurements

 \diamond Forward-backward asymmetry in $e^+e^- o Z o \ell \bar{\ell}$, $q \bar{q}$

♦ Z-decay branching fractions

	No. data	SM	$z_L:10^{15}$	$z_L:10^{10}$	$z_L:10^5$
$\sin^2 heta_W$		0.2312	0.2309	0.2303	0.2284
$\chi^2(AFB)$	6	10.8	6.3	6.4	7.1
$\chi^2(Z \; decay)$	8	13.6	16.5	37.7	184.5

1st KK modes

	$z_L:10^{15}$	$z_L:10^5$
$m_{ m KK}$	1466	836
$Z^{(1)}$	1130	653
$\gamma^{(1)}, g^{(1)}$	1144	678
$u^{(1)}$	1361	1037
$t^{(1)}$	1121	634
		in GeV

KK $Z^{(1)}$ & $\gamma^{(1)}$

Larger couplings for right-handed quarks and lepton

 \sim imes 10

Z' search at LHC

CMS 1103.0981

 $M>1140\,{\rm GeV}$

LHC (3.5 + 3.5 TeV)

 $qar{q}
ightarrow Z^{(1)}, \gamma^{(1)}
ightarrow e^+e^-$

Asymmetry in rapidity distribution

Much larger couplings for right-handed quarks and leptons

Gauge-Higgs unification can be tested.

Higgs can naturally become stable. Higgs = missing energy/momentum

EW precision data A_{FB}, Z decay $Z^{(1)}$ search (Tevatron/LHC) $\Rightarrow z_L > 10^{15}$

Find
$$Z^{(1)}$$
 at LHC.
 $\Gamma/m \sim 0.4$
Asymmetry in e^+e^- distribution