# Complete set of observables in 2HDM 

I.F.Ginzburg, K.A.Kanishev, M.Krawczyk, D.Sokolovska

August 23, 2011

## Motivation

$$
\mathcal{L}_{\lambda}(\phi) \downharpoonleft \Rightarrow \sigma^{\sigma_{a b \rightarrow c d}}
$$

- "Standard procedure".


## Motivation

$$
\mathcal{L}_{\lambda}(\phi) \Leftarrow \sigma_{a b \rightarrow c d}
$$

- "Standard procedure".
- The parameters $\lambda$ can be detemined from observed data.


## Motivation

$\mathcal{L}_{\lambda}(\phi)$

## $\sigma_{a b \rightarrow c d}$

- "Symmetry breaking case".


## Motivation

$$
\mathcal{L}_{\lambda}(\phi) \Rightarrow \quad \mathcal{L}_{g}(\langle\phi\rangle, \chi) \quad \Rightarrow \quad \sigma_{a b \rightarrow c d}
$$

- "Symmetry breaking case".
- An "intermediate step" is introduced.


## Motivation

## $\mathcal{L}_{\lambda}(\phi) \Leftarrow \quad \mathcal{L}_{g}(\langle\phi\rangle, \chi) \Leftarrow \sigma_{a b \rightarrow c d}$

- "Symmetry breaking case".
- An "intermediate step" is introduced.
- Need a procedure to "reverse" this arrow.


## Motivation

$$
\mathcal{L}_{\lambda}(\phi) \Leftarrow \mathcal{L}_{g}(\langle\phi\rangle, \chi) \Leftarrow \Leftarrow \sigma_{a b \rightarrow c d}
$$

## In case of 2 HDM

- Most general 2HDM contains 14 parameters ( 6 real and 4 complex)
? How one can find those parameters if masses and couplings are known?
? How many and which couplings are needed?


## Outline

1. Two Higgs Doublet Model (2HDM)

- 2HDM lagrangian
- Extrema of the potential
- Reparametrization and Higgs basis

2. Reconstruction: Quadratic terms

- Mass matrix
- Mixing matrix

3. Qubic and Quartic terms
$\Rightarrow$ Conclusions and outlook

## 2HDM Potential

- Two scalar doublets: $\phi_{1}=\binom{\phi_{11}}{\phi_{12}} \quad \phi_{2}=\binom{\phi_{21}}{\phi_{22}}$
- Scalar combinations: $x_{1}=\phi_{1}^{\dagger} \phi_{1}, \quad x_{2}=\phi_{2}^{\dagger} \phi_{2}, x_{3}=\phi_{1}^{\dagger} \phi_{2}$.


## Most general form of potential

$$
\begin{gathered}
V=\frac{1}{2} \lambda_{1} x_{1}^{2}+\frac{1}{2} \lambda_{2} x_{2}^{2}+\lambda_{3} x_{1} x_{3}+\lambda_{4} x_{3}^{\dagger} x_{3}+\left[\frac{1}{2} \lambda_{5} x_{3}^{2}+\left(\lambda_{6} x_{1}+\lambda_{7} x_{2}\right) x_{3}+\text { h.c. }\right] \\
-\frac{1}{2}\left[m_{11}^{2} x_{1}+m_{22}^{2} x_{2}+\left(m_{12}^{2} x_{3}+\text { h.c. }\right)\right]
\end{gathered}
$$

Shorthand notations: $\lambda_{345}=\lambda_{3}+\lambda_{4}+\operatorname{Re} \lambda_{5}, \tilde{\lambda}_{345}=\lambda_{3}+\lambda_{4}-\operatorname{Re} \lambda_{5}$

- Most general case: $\lambda_{1-4}, m_{11}^{2}, m_{22}^{2}$ - real, $\lambda_{5-7}, m_{12}^{2}$ - complex.
- Particle content:
- 3 neutral scalars $h_{1}, h_{2}, h_{3}$
- one charged scalar $H^{ \pm}$


## Classification of extrema in 2HDM

$$
\begin{gathered}
\left\langle\phi_{1}\right\rangle=\binom{0}{v_{1}} \quad\left\langle\phi_{2}\right\rangle=\binom{u}{v_{2} e^{-i \xi}}, \quad u, v_{1}, v_{2}>0 \\
v^{2}=v_{1}^{2}+v_{2}^{2}+u^{2}, \quad \tan \beta=v_{2} / v_{1}
\end{gathered}
$$

Neutral extremum: $u=0$
Electric charge is conserved, 5 physical Higgs particles ( $h_{1}, h_{2}, h_{3}$, and $H^{ \pm}$) Spontaneous CP violating (sCPv) $\xi \neq 0$ - two degenerate extrema
CP conserving (CPc) $\xi=0-$ up to 4 such extrema

Electroweak conserving point (EW): $u=v_{1}=v_{2}=0$
Electroweak symmetry is not broken. $M_{W, z}=m_{q}=0$

Charged extremum: $u \neq 0$
Electric charge is not conserved, photon is massive

## Classification of extrema in 2HDM

$$
\begin{gathered}
\left\langle\phi_{1}\right\rangle=\binom{0}{v_{1}} \quad\left\langle\phi_{2}\right\rangle=\binom{u}{v_{2} e^{-i \xi}}, \quad u, v_{1}, v_{2}>0 \\
v^{2}=v_{1}^{2}+v_{2}^{2}+u^{2}, \quad \tan \beta=v_{2} / v_{1}
\end{gathered}
$$

## Neutral extremum: $u=0$

Electric charge is conserved, 5 physical Higgs particles ( $h_{1}, h_{2}, h_{3}$, and $H^{ \pm}$) Spontaneous CP violating (sCPv) $\xi \neq 0$ - two degenerate extrema CP conserving (CPc) $\xi=0$ - up to 4 such extrema

- $v_{1}, v_{2}$ and $\xi$ are determined by system of cubic equations.
- "Shifted fields"

$$
\phi_{1}=\left(\begin{array}{c}
G^{ \pm} c_{\beta}-H^{ \pm} s_{\beta} \\
v_{1}+\eta_{1}+i\left(G^{0} c_{\beta}-\eta_{3} s_{\beta}\right) \\
\sqrt{2}
\end{array}\right), \phi_{2}=\binom{\left(G^{ \pm} c_{\beta}+H^{ \pm} s_{\beta}\right)}{\frac{v_{2}+\eta_{2}+i\left(G^{0} s_{\beta}+\eta_{3} c_{\beta}\right)}{\sqrt{2}}} e^{-i \xi}
$$

- $\eta_{i}$ - are not physical fields.


## Reparametrization

- Model contains two fields with identical quantum numbers
$\Rightarrow$ It can be described in terms of fields $\phi_{i}^{\prime}$, obtained from $\phi_{i}$ by a global unitary transformation.

$$
\begin{gathered}
\binom{\phi_{1}^{\prime}}{\phi_{2}^{\prime}}=\mathcal{F}\binom{\phi_{1}}{\phi_{2}} \\
\mathcal{F}=e^{-i \rho_{0}}\left(\begin{array}{cc}
\cos \theta e^{i \rho / 2} & \sin \theta e^{i(\tau-\rho / 2)} \\
-\sin \theta e^{-i(\tau-\rho / 2)} & \cos \theta e^{-i \rho / 2}
\end{array}\right)
\end{gathered}
$$

- The transformation induces the changes of coefficients of Lagrangian - reparametrization transformation.


## Higgs (Georgi) basis

- One can exploit reparametrization to set $v_{2}=0$ : Higgs basis
- Notations for parameters in Higgs basis: $\lambda_{i} \rightarrow \Lambda_{i}$ and $m_{i j} \rightarrow \mu_{i j}^{2}$.
- Extremum equations:

$$
v^{2} \Lambda_{1}=\mu_{11}^{2}, \quad v^{2} \operatorname{Re} \Lambda_{6}=\operatorname{Re} \mu_{22}^{2}, \quad v^{2} \operatorname{Im} \Lambda_{6}=\operatorname{Im} \mu_{22}^{2}
$$

- Decomposition:

$$
\phi_{1}=\binom{G^{+}}{\frac{v+\eta_{1}+i G^{0}}{\sqrt{2}}}, \phi_{2}=\binom{H^{+}}{\frac{\eta_{2}+i \eta_{3}}{\sqrt{2}}}
$$

$\eta_{i}$ - are not physical states. Physical states: $h_{i}=R_{i j} \eta_{j}$.

## Masses

## Mass of the charged scalar

$$
M_{H^{ \pm}}^{2}=v^{2} \Lambda_{3}-\mu_{22}^{2}
$$

Neutral scalars mass matrix

$$
\begin{array}{r}
M_{i j}=v^{2}\left(\begin{array}{ccc}
\Lambda_{1} & \operatorname{Re} \Lambda_{6} & -\operatorname{Im} \Lambda_{6} \\
\operatorname{Re} \Lambda_{6} & {\left[\Lambda_{345}-\mu_{22}^{2} / v^{2}\right] / 2} & -\operatorname{Im} \Lambda_{5} / 2 \\
-\operatorname{Im} \Lambda_{6} & -I m \Lambda_{5} / 2 & {\left[\tilde{\Lambda}_{345}-\mu_{22}^{2} / v^{2}\right] / 2}
\end{array}\right)= \\
\\
=R^{T} \cdot\left(\begin{array}{ccc}
M_{1}^{2} & 0 & 0 \\
0 & M_{2}^{2} & 0 \\
0 & 0 & M_{3}^{2}
\end{array}\right) \cdot R
\end{array}
$$

- Knowing $M_{1}, M_{2}, M_{3}, M_{H^{ \pm}}$and mixing matrix $R$ one can find $\Lambda_{1}, \Lambda_{4}, \operatorname{Re} \Lambda_{5}, \operatorname{Im} \Lambda_{5}, \operatorname{Re} \Lambda_{6}, \operatorname{Im} \Lambda_{6}$
- Knowing $M_{1}, M_{2}, M_{3}, M_{H^{ \pm}}$and mixing matrix $R$ one can find $\Lambda_{1}, \Lambda_{4}, \operatorname{Re} \Lambda_{5}, \operatorname{Im} \Lambda_{5}, \operatorname{Re} \Lambda_{6}, \operatorname{Im} \Lambda_{6}$

$$
\begin{array}{rlrl}
v^{2} \Lambda_{1} & =M_{11} & & R_{i 1} R_{i 1} M_{i}^{2} \\
v^{2} \Lambda_{4} & =M_{22}+M_{33}-M_{H^{ \pm}}^{2} & & =\left(R_{i 2} R_{i 2}+R_{i 3} R_{i 3}\right) M_{i}^{2}+M_{H^{ \pm}}^{2} \\
v^{2} R e \Lambda_{5}=M_{22}-M_{33} & & =\left(R_{i 2} R_{i 2}-R_{i 3} R_{i 3}\right) M_{i}^{2} \\
v^{2} I m \Lambda_{5}=-2 M_{23} & & =-2 R_{i 2} R_{i 3} M_{i}^{2} \\
v^{2} \operatorname{Re} \Lambda_{6}=M_{13} & & =R_{i 1} R_{i 3} M_{i}^{2} \\
v^{2} I m \Lambda_{6}=-M_{23} & & =-R_{i 2} R_{i 3} M_{i}^{2}
\end{array}
$$

(Summation over repeated indices implied.)

$$
\mu_{11}^{2}=v^{2} \Lambda_{1}, \quad \operatorname{Re} \mu_{22}^{2}=v^{2} \operatorname{Re} \Lambda_{6}, \quad \operatorname{Im} \mu_{22}^{2}=v^{2} I m \Lambda_{6}
$$

## Rotation matrix

Rotation matrix is parametrized by 3 Euler angles.
Vector boson couplings

- $g\left(W^{+} W^{-} h_{i}\right)=-i R_{1 i} \frac{g^{2} v}{2}, \quad g\left(Z Z h_{i}\right)=-i R_{1 i} \frac{\left(g^{2}+\left(g^{\prime}\right)^{2}\right) v}{2}$
- $g\left(W^{+} H^{-} h_{i}\right)=-i\left(R_{2 i}-i R_{3 i}\right) \frac{g}{2}\left(p_{H^{+}}-p_{h_{i}}\right)$


## Relative couplings

- Relative couplings $\chi_{j}^{(i)}=g_{j}^{(i)} / g_{j}^{\prime \prime} S M^{\prime \prime}$
- $\chi_{V}^{(i)}=R_{1 i}$
- $\chi_{H+W_{-}}^{(i)}=R_{2 i}-i R_{3 i}$


## Rotation matrix

- Elements of $R_{i j}$ and $M_{i j}$ are parametrization dependent.
- There is still reparametrization freedom in Higgs basis to change the phase of the $\phi_{2}$ field:

$$
\phi_{2} \rightarrow e^{i \rho} \phi_{2}
$$

This corresponds to

$$
\left(\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \rho & -\sin \rho \\
0 & \sin \rho & \cos \rho
\end{array}\right) \cdot\left(\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right)
$$

- Only two Euler angles in $R_{i j}$ are relevant.


## Rotation matrix

- Example: $\chi_{V}^{(1)}$ and $\chi_{V}^{(2)}$ are known

$$
R_{i j}=\left(\begin{array}{ccc}
\chi_{1} & \chi_{2} & \sqrt{1-\chi_{1}^{2}-\chi_{2}^{2}} \\
-\chi_{1} \sqrt{\frac{1-\chi_{1}^{2}-\chi_{2}^{2}}{\chi_{1}^{2}+\chi_{2}^{2}}} & -\chi_{2} \sqrt{\frac{1-\chi_{1}^{2}-\chi_{2}^{2}}{\chi_{1}^{2}+\chi_{2}^{2}}} & \sqrt{\chi_{1}^{2}+\chi_{2}^{2}} \\
\frac{\chi_{2}}{\sqrt{\chi_{1}^{2}+\chi_{2}^{2}}} & -\frac{\chi_{1}}{\sqrt{\chi_{1}^{2}+\chi_{2}^{2}}} & 0
\end{array}\right)
$$

## Triple couplings

$$
\begin{gathered}
M_{H^{ \pm}}^{2}=v^{2} \Lambda_{3}-\mu_{22}^{2} \\
M_{i j}=v^{2}\left(\begin{array}{ccc}
\Lambda_{1} & \operatorname{Re} \Lambda_{6} & -I m \Lambda_{6} \\
\operatorname{Re} \Lambda_{6} & {\left[\Lambda_{345}-\mu_{22}^{2} / v^{2}\right] / 2} & -I m \Lambda_{5} / 2 \\
-I m \Lambda_{6} & -I m \Lambda_{5} / 2 & {\left[\tilde{\Lambda}_{345}-\mu_{22}^{2} / v^{2}\right] / 2}
\end{array}\right)
\end{gathered}
$$

- Parameters $\Lambda_{2}, \operatorname{Re} \Lambda_{7}, I m \Lambda_{7}$ don't appear in masses.
$\Rightarrow$ One could fix those parameters only from higgs self-couplings.
- $\Lambda_{3}$ and $\mu_{22}^{2}$ appear in masses only in combination $v^{2} \Lambda_{3}-\mu_{22}^{2}$
$\Rightarrow$ One also need to obtain either $\Lambda_{3}$ or $\mu_{22}^{2}$ from self-couplings.


## Triple couplings

$H^{+} H^{-} h_{i}$ couplings

$$
g\left(H^{+} H^{-} h_{i}\right)=v\left(R_{1 i} \Lambda_{3}+R_{2 i} R e \Lambda_{7}-R_{3 i} I m \Lambda_{7}\right)
$$

$h_{i} h_{i} h_{i}$ couplings

$$
g\left(h_{i} h_{i} h_{i}\right)=\frac{3}{v}\left[M_{i}^{2}\left(2-R_{1 i}^{2}\right) R_{1 i}+v^{2}\left(1-R_{1 i}^{2}\right)\left(R_{1 i} \frac{\mu_{22}^{2}}{v^{2}}+R_{2 i} R e \Lambda_{7}-R_{3 i} I m \Lambda_{7}\right)\right]
$$

Three triple couplings are required to find $\operatorname{Re} \Lambda_{7}, \operatorname{Im} \Lambda_{7}, \Lambda_{3}$ and $\mu_{22}^{2}$

## Triple couplings

## General expression for triple couplings

$$
g\left(h_{i} h_{j} h_{k}\right)=\frac{3 M_{a}^{2} R_{a \alpha}}{v}\left[2 R_{a \beta} \mathcal{R}_{i j k}^{1 \alpha \beta}-R_{a 1} \mathcal{R}_{i j k}^{11 \alpha}\right]+3 v T_{a}\left[\mathcal{R}_{i j k}^{a \alpha \alpha}-\mathcal{R}_{i j k}^{a 11}\right]
$$

- Where $T_{i}=\left(\mu_{22}^{2} / v^{2}, \operatorname{Re} \Lambda_{7},-\operatorname{Im} \Lambda_{7}\right)$, and

$$
\begin{aligned}
\mathcal{R}_{i j k}^{a b c}=\frac{1}{6}\left(R_{i a} R_{j b} R_{k c}+R_{i a} R_{j c} R_{k b}+\right. & R_{i b} R_{j a} R_{k c} \\
& \left.+R_{i b} R_{j c} R_{k a}+R_{i c} R_{j a} R_{k b}+R_{i c} R_{j b} R_{k a}\right)
\end{aligned}
$$

## Necessity of quartic coupling

$\Lambda_{2}$ do not appear in triple couplings either
At least one quartic coupling is requred
$g\left(H^{+} H^{+} H^{-} H^{-}\right)=2 \Lambda_{2}$
$g\left(h_{i} h_{j} h_{k} h_{l}\right)=$
$=\frac{3 M_{a}^{2}}{v^{2}}\left[4 R_{\mathrm{a} \alpha}\left(R_{\mathrm{a} \beta} \mathcal{R}_{i j k l}^{11 \alpha \beta}-R_{a 1} \mathcal{R}_{i j k l}^{111 \alpha}\right)+R_{a 1} R_{a 1} \mathcal{R}_{i j k l}^{1111}\right]+B_{\alpha \beta}\left[\mathcal{R}_{i j k l}^{\alpha \beta \gamma \gamma}-\mathcal{R}_{i j k l}^{\alpha \beta 11}\right]$
With $B_{1 i}=B_{i 1}=T_{i}, B_{22}=B_{33}=\Lambda_{2} / 2$.

## Constraints

## $\Lambda_{i}, \mu_{i j}^{2}$ must also satisfy

- Positivity constraints -potential is bounded from below.
- Vacuum stability -second minimum (if exists) is not lower.
- Unitarity.

On can also check the symmetries of potential.
Construction and diagonalization of $\Lambda_{\mu \nu}$ matrix [Ivanov], is a simple numerical task.

## CP conserving case

If potential had explicit CP consevation and there is no spontaneous $C P$ violation
then in Higgs basis all parameters are real.

- $h_{3}=\eta_{3}=A$ - doesn't mix with $h_{1}$ and $h_{2}$

$$
R_{i j}=\left(\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- There's no CP violating couplings, like $g(A A A)$ or $H^{+} H^{-} A$.
- (Though, generally, it is possible to have "CP violation in couplings")
$\Rightarrow$ Only one mixing angle and two (instead of three) triple couplings are required.


## Conclusions

- In order to fix the parameters of most general 2HDM one needs
- Rotation matrix (2 independent parameters).
- Masses of 3 neutral and one charged scalars.
- Three triple higgs self-couplings.
- One quartic higgs self-coupling.
- In CP conserving case
- Rotation matrix has only one independent parameter.
- Only two triple higgs self-couplings are needed.
- One quartic higgs self-coupling is still requred.


## On $\tan \beta$

- General form of Yukawa sector in 2HDM $Q_{L}^{i}=\binom{\bar{u}_{L}^{i}}{\bar{d}_{L}^{i}}$

$$
-\mathcal{L}_{Y}=\Gamma_{1}^{i j} Q_{L}^{i} \phi_{1} d_{R}^{j}+\Delta_{1}^{i j} Q_{L}^{j} \tilde{\phi}_{1} u_{R}^{j}+\Gamma_{2}^{i j} Q_{L}^{i} \phi_{2} d_{R}^{j}+\Delta_{2}^{i j} Q_{L}^{i} \tilde{\phi}_{2} u_{R}^{j}+\text { h.c. }
$$

- $\tan \beta$ is parametrization dependent.

For example, in Higgs basis $\tan \beta=\frac{v_{2}}{v_{1}}=0$

- There is a preferred reparametrization basis, where:


## Model I

All fermions couple to $\phi_{1}$
$\Delta_{2}=\Gamma_{2}=0$

## Model II

$d_{R}$ couples to $\phi_{1}$
$u_{R}$ couples to $\phi_{2}$
$\Delta_{1}=\Gamma_{2}=0$

- "Usual" $\tan \beta$ is defined in these preferred basis

