Philipp Leser (TU Dortmund)

S_{3} flavor symmetry at the LHC

G. Bhattacharyya, PL, H. Päs, Phys. Rev. D83, 011701 (2011)

+ work in progress

Why flavor symmetries?

- Flavor symmetries have the potential to explain:

- Masses, mass relations, hierarchies
- Patterns in the mixing matrices (CKM vs. PMNS)

$$
V_{\mathrm{TBM}}=\left(\begin{array}{ccc}
-\sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0 \\
\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \\
\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}}
\end{array}\right)
$$

What kind of symmetries?

- Abelian symmetries like Froggatt-Nielsen $U(1)$, or Z_{n}
- All kinds of non-abelian discrete symmetries like $S_{3}, A_{4}, S_{4}, \ldots$ can be used to deduce some of these relations
- through specific choice of representations for particle content
- through vacuum alignment of extra scalars

How to discriminate?

- Huge variety of models
- A lot of them fit neutrino data reasonably well, but the allowed parameter space is large
- Search for other ways to test flavor symmetries

Phenomenology of discrete symmetries

- Typical interesting predictions:
- sum rules / connections between lepton and quark sectors (\Rightarrow GUT embedding)
- enlarged scalar sector (masses, mixings)
- branching ratios of scalar decays differ from SM
- unusual collider signatures
, FCNCs with scalar mediators

$$
\begin{aligned}
\text { RH singlets } & \\
L_{3}, \ell_{3}^{c}, \ell_{1}^{c} \propto \mathbf{1} & \ell_{2}^{c} \propto \mathbf{1}^{\prime} \\
Q_{3}, u_{3}^{c}, u_{1}^{c}, d_{3}^{c}, d_{1}^{c} \propto \mathbf{1} & u_{2^{\prime}}^{c} d_{2}^{c} \propto \mathbf{1}^{\prime} \\
\phi_{3} \propto \mathbf{1} &
\end{aligned}
$$

Quark doublets

- Two generations $\rightarrow S_{3}$ doublet; the other $\rightarrow S_{3}$ singlet

A specific S_{3} model

- One scalar for each generation
- Neutrino sector separate, diagonal (See-Saw II, 2 heavy EW triplet scalars)
- Simple vacuum alignment:

$$
\left\langle\phi_{1}\right\rangle=\left\langle\phi_{2}\right\rangle=v \quad\left\langle\phi_{3}\right\rangle=v_{3} \quad 2 v^{2}+v 3^{2}=v_{\mathrm{SM}}^{2}
$$

$\begin{aligned} & \text { translates } \\ & \text { directly into } \\ & \text { PMNS matrix }\end{aligned} \mathcal{M}_{l}=\left(\begin{array}{ccc}f_{4} v_{3} & f_{5} v_{3} & 0 \\ 0 & f_{1} v & -f_{2} v \\ 0 & f_{1} v & f_{2} v\end{array}\right)$

Minimization of the potential

- Conditions applied for minimization

- Wanted vacuum alignment $\left\langle\phi_{1}\right\rangle=\left\langle\phi_{2}\right\rangle=v$ must be a solution
- It must actually be a minimum
- Global stability of the solution
- Allow fixed ratio of v_{3} and v
- We only consider real parameters

Results of parameter scan for scalars

- Physical CP-even neutral scalars:
m_{b} light ($<200 \mathrm{GeV}$), m_{c} heavier ($200 \mathrm{GeV}<m_{c}<450 \mathrm{GeV}$), $m_{a}<350 \mathrm{GeV}$

Scalar mixing

- Weak basis scalars $h_{1 / 2 / 3}$ are connected to physical scalars $h_{a / b / c}$ via

$$
\begin{aligned}
& h_{1}=U_{b} h_{b}+U_{c} h_{c}-\frac{1}{\sqrt{2}} h_{a} \\
& h_{2}=U_{b} h_{b}+U_{c} h_{c}+\frac{1}{\sqrt{2}} h_{a}
\end{aligned}
$$

$$
h_{3}=U_{3 b} h_{b}+U_{3 c} h_{c}
$$

- The U are analytically tractable but complicated functions of the parameters of the scalar potential

Couplings to gauge and matter fields

- Couplings of symmetry basis scalars h_{i} to W and Z are modified by a factor of $v_{i} / v_{\mathrm{SM}}<1$ compared to Standard Model
- In terms of physical scalars h_{a}, h_{b} and h_{c} :
- Suppression of the couplings of h_{b} and h_{c} to gauge fields is governed by VEVs and scalar mixing parameters

h_{a} is special

- h_{a} does not couple to W or Z via the three-pointvertex
- this follows because the h_{a} content in the symmetry basis scalars h_{1} and h_{2} is equal, but has opposite signs.
- As the VEVs v_{1} and v_{2} are equal, the h_{a} coupling vanishes

Yukawa couplings

- Identical structures in charged lepton sector and up- / down quark sectors
- 2 scalars $h_{b, c}$ couple similarly to SM Higgs:
- $h_{b, c} \rightarrow e e(u u, d d)$
$h_{b, c} \rightarrow \mu \mu(s s, c c)$
$h_{b, c} \rightarrow \tau \tau(b b, t t)$
- Additional FCNC coupling: $h_{b, c} \rightarrow e \mu$

h_{a} is special, again

The $3^{\text {rd }}$ scalar ha only couples off-diagonally, always with $3^{\text {rd }}$ generation:

- $h_{a} \rightarrow e \tau(d b, u t) \quad h_{a} \rightarrow \mu \tau(s b, c t)$
- FCNC couplings are numerically small and fixed by fermion masses

Signatures of h_{b} and h_{c}

- Both can decay into usual Higgs decay modes (ZZ, WW, $b \bar{b}, \gamma \gamma, \ldots$), but:
- Dominant decay for a light scalar h_{a} is three-scalar mode $h_{b / c} \rightarrow h_{a} h_{a}$
- Parameter k is the ratio between three-scalar coupling and $h_{b} W W$ coupling

(For $m_{a}=50 \mathrm{GeV}, k \approx 10$
- Compare to THDM, where it is typically $5 \lesssim k \lesssim 30$ for a 400 GeV scalar decaying into two 114 GeV scalars

Signatures of h_{a}

- As long as $m_{a}<m_{t}$, the dominant decay mode is into jets
* Possibly significant decay mode into $\mu \tau$

Production of h_{a}

bight h_{a} is a decay product of $h_{b / c}$

- Production of h_{a} possible through top decays for light h_{a}, subsequent decay into $\mu \tau$ might be possible to detect
- For $m_{a}>m_{t}, h_{a}$ dominantly decays off-diagonally into ct

h_{a}
- Dependency on vacuum alignment:
- Quark mixing requires small deviation from (1, 1, 0) vacuum alignment
b some weakening of special properties of h_{a}, i.e. small three-vertex couplings to vector bosons

Pseudo-scalars

- Physical pseudo-scalars χ_{a} and χ_{b} have patterns of couplings to quarks / leptons identical to h_{a} and h_{b} / h_{c} :

- $h_{a} \rightarrow \chi_{a} \chi_{b}$ is allowed for certain mass hierarchies; would change special h_{a} decay properties

tu

- The couplings of h_{a}^{+}and h_{b}^{+}to quarks and leptons follow the same pattern as pseudo-scalars.
- There is no $b \rightarrow s \gamma$.
- The off-diagonal (12) coupling of h_{b}^{+}allows for $\mu \rightarrow e \gamma$

On Flavor

- Neutral scalars contribute to $\mu \rightarrow e \gamma, \mu \rightarrow e e e$, etc.
* The branching ratio is tiny, i.e. ~10-17
- Contributions to K^{0}, D^{0}, B_{d}^{0} mixing below bounds and can be controlled via free parameter
- B_{s}^{0} mixing contribution depends on ratio of VEVs

- Due to pattern of couplings, there is no scalar contribution to $b \rightarrow s \gamma$ or other processes involving 32/31and diagonal couplings

Summary

- Scalar sector is an interesting avenue to test flavor symmetries
- S_{3} can explain some mixing angles, comes with an enlarged scalar sector.
- Two SM-Higgs-like scalars h_{b} and h_{c}. Decay dominantly into third scalar $h_{a} h_{a}$
- Scalar h_{a} has limited gauge interactions
- h_{a} has only off-diagonal Yukawa couplings, involving a lepton or quark from the third generation
- Scalars might already be buried in existing LEP or Tevatron data
- Currently expanding the analysis to include all scalar degrees of freedoms

\square technische universität dortmund

Backup material

Minimization of the potential

The conditions are met via the following parameter constraints:

$$
\left.\begin{array}{lrl}
-m^{2}=\left(2 \lambda_{1}+\lambda_{3}\right) v^{2}+\left(\lambda_{5}+\lambda_{6}+\lambda_{7}\right) v_{3}^{2}+3 \lambda_{8} v v_{3} \\
-m_{3}^{2}=\lambda_{4} v_{3}^{2}+2\left(\lambda_{5}+\lambda_{6}+\lambda_{7}\right) v^{2}+2 \lambda_{8} v^{3} / v_{3}
\end{array}\right] \begin{array}{lll}
\lambda_{1}+\lambda_{2}>0, & \lambda_{1}+\lambda_{3}>\lambda_{2}, & \lambda_{4}>0 \\
\lambda_{5}+\lambda_{6}>0, & \lambda_{7}>0, & \lambda_{8}>0
\end{array}
$$

The spectrum is then determined using a parameter scan in this space

Minimization of the potential

- Gives allowed vacuum alignments, masses and mixings of the scalars
- S3 invariant scalar potential (doublets, 8+2 params) $V=m^{2}\left(\phi_{1}^{\dagger} \phi_{1}+\phi_{2}^{\dagger} \phi_{2}\right)+m_{3}^{2} \phi_{3}^{\dagger} \phi_{3}+\frac{\lambda_{1}}{2}\left(\phi_{1}^{\dagger} \phi_{1}+\phi_{2}^{\dagger} \phi_{2}\right)^{2}+\frac{\lambda_{2}}{2}\left(\phi_{1}^{\dagger} \phi_{1}-\phi_{2}^{\dagger} \phi_{2}\right)^{2}$
$\begin{aligned}+\lambda_{3} \phi_{1}^{\dagger} \phi_{2} \phi_{2}^{\dagger} \phi_{1}+\frac{\lambda_{4}}{2}\left(\phi_{3}^{\dagger} \phi_{3}\right)^{2} & +\lambda_{5}\left(\phi_{3}^{\dagger} \phi_{3}\right)\left(\phi_{1}^{\dagger} \phi_{1}+\phi_{2}^{\dagger} \phi_{2}\right)+\lambda_{6} \phi_{3}^{\dagger}\left(\phi_{1} \phi_{1}^{\dagger}+\phi_{2} \phi_{2}^{\dagger}\right) \phi_{3} \\ & +\left[\lambda_{7} \phi_{3}^{\dagger} \phi_{1} \phi_{3}^{\dagger} \phi_{2}+\lambda_{8} \phi_{3}^{\dagger}\left(\phi_{1} \phi_{2}^{\dagger} \phi_{1}+\phi_{2} \phi_{1}^{\dagger} \phi_{2}\right)+\text { h. c. }\right]\end{aligned}$

Scalar mixing

- One physical scalar is given by $h_{a}=\left(h_{2}-h_{1}\right) / \sqrt{2}$, i.e. there is no dependence on the scalar parameters or on the VEVs.
- This happens because S_{3} requires the scalar mass matrix to be of the form
$\left(\begin{array}{lll}a & b & c \\ b & a & c \\ c & c & d\end{array}\right)$

> same mechanism is responsible for maximal mixing in lepton sector
which always yields ($-1,1,0$) as one eigenvector.

Scalar masses

- The squared masses of the CP-even neutral scalars are given by
where

Yukawas

- Mass terms for charged leptons (quarks are treated identically):

$$
\left(\phi_{1} L_{2}+\phi_{2} L_{1}\right) \ell_{1}^{c} \quad\left(\phi_{1} L_{2}-\phi_{2} L_{1}\right) \ell_{2}^{c} \quad L_{3} \ell_{3}^{c} \phi_{3} \quad L_{3} \ell_{1}^{c} \phi_{3}
$$

- After SSB, this leads to the mass matrix:

$$
\mathcal{M}_{\ell}=\left(\begin{array}{ccc}
f_{4} v_{3} & f_{5} v_{3} & 0 \\
0 & f_{1} v & -f_{2} v \\
0 & f_{1} v & f_{2} v
\end{array}\right)
$$

* The specific alignment $\left\langle\phi_{1}\right\rangle=\left\langle\phi_{2}\right\rangle=v$ leads to maximal atm. mixing
- Special vacuum alignments like this are needed in most models based on discrete symmetries

