

Kin-ya Oda (Osaka)

1108.1764 & 5 with

K. Nishiwaki (Kobe→Allahabad)

N. Okuda (Osaka)

R. Watanabe (Osaka)

LHC!!

- Weak-scale SUSY (almost) dead.
 - ★ I would do <u>light degenerate</u> ($\Delta M < \sim 100 GeV$) scenario if I was SUSY enthusiast:
 - * Even more "natural" than ever.

- * Difficult (well, challenging) to observe.
- * Would be seen in events triggered by ISR.
- Weak-scale UED provides similar ISR signature in M_{T2}. [Murayama, Nojiri, Tobioka, 2011]
 - * Would be of interest for SUSY clan too.

- Great step to prove that we are really living in a "superconducting" vacuum.
- We focus on middle (islands ∈ [200,300]GeV) and heavy (>460GeV) regions.
 - ★ The >2 σ excess at 130-140GeV in EPS (1fb⁻¹) is gone in LP (2fb⁻¹).

- Great step to prove that we are really living in a "superconducting" vacuum.
- We focus on middle (islands ∈ [200,300]GeV) and heavy (>460GeV) regions.
 - ★ The >2 σ excess at 130-140GeV in EPS (1fb⁻¹) is gone in LP (2fb⁻¹).

- Great step to prove that we are really living in a "superconducting" vacuum.
- We focus on middle (islands ∈ [200,300]GeV) and heavy (>460GeV) regions.
 - ★ The >2 σ excess at 130-140GeV in EPS (1fb⁻¹) is gone in LP (2fb⁻¹).

- Great step to prove that we are really living in a "superconducting" vacuum.
- We focus on middle (islands∈[200,300]GeV) and heavy (>460GeV) regions.
 - ★ The >2 σ excess at 130-140GeV in EPS (1fb⁻¹) is gone in LP (2fb⁻¹).

Why UED?

- Provides LKP as DM candidate.
 - ★ Which is stable due to geometry, not by hand.
 - * Conservation of KK parity, KK (angular) momentum, etc.
 - ★ From small number of free parameters.
- Predicts (multiple of) three generations in 6D.
 - ★ (From cancellation of SU(2)_W global gauge anomaly [Dobrescu, Poppitz, 2001].)
- Heavy Higgs > 200GeV allowed (even favored).
 - ★ In weak-scale UED: $M_{KK} \sim v_{EW} = 246 GeV$.
 - ★ Due to KK-top loops in T-parameter. (shown later)

So what is UED?

- All SM fields live in higher dimensions.
 - ★ Compactified within ~am.
- KK modes for each SM mode.
 - ★ Different masses, same charges.
- Higgs as zero mode.
 - ★ EWSB by bulk Higgs potential.
 - * (Except for Dirichlet Higgs model. [Haba, KO, Takahashi, 11])

Outline: UED Higgs at LHC

- 1. Want signal independent of detailed boundary structure
- 2. Heavy Higgs from KK-top loops
- 3. Enhanced gluon fusion from KKtop loops

Dependence on boundary structure

- UEDs require orbifolding to have chiral fermions.
 - \star (Expept for S²-based ones.)
 - * Resulting in orbifold **fixed point**.
 - ★ On which we can put arbitrary mass, mixing, and interaction (consistent to SM gauge symmetry).
- Especially KK mass splitting could be affected.
 - ★ All <u>b→s</u>γ, <u>direct KK signals</u> and <u>DM relic</u> <u>abundance</u> suffer from boundary structure.

soft ones

Can we have a UED signal independent of such detailed boundary structure?

Outline: UED Higgs at LHC

- 1. Want signal independent of detailed boundary structure
- 2. Heavy Higgs from KK-top loops
- 3. Enhanced gluon fusion from KKtop loops

KK-top loops in T-parameter

KK-top contribution shift T-parameter positively.

★ E.g. in 5D mUED on S^1/Z_2 :

$$S \simeq \frac{1}{6\pi} \log \frac{m_H}{m_{H,\text{ref}}} + \frac{1}{6\pi} \sum_{n=1}^{\infty} \frac{m_t^2}{n^2/R^2}$$

$$T \simeq -\frac{3}{8\pi c_W^2} \log \frac{m_H}{m_{H,\text{ref}}} + \frac{m_t^2}{4\pi^2 \alpha v_{\text{EW}}^2} \sum_{n=1}^{\infty} \frac{m_t^2}{n^2/R^2}$$

1.6

$$S \propto \Pi_{33}' - \Pi_{3Q}'$$
 $T \propto \Pi_{11} - \Pi_{33}$

KK-top loops in T-parameter

• KK-top contribution shift T-parameter positively.

$$T \simeq -\frac{3}{8\pi c_W^2} \log \frac{m_H}{m_{H,\mathrm{ref}}}$$

$$S \propto \Pi_{33}' - \Pi_{3Q}'$$
 $T \propto \Pi_{11} - \Pi_{33}$

1.6

KK top

Heavy Higgs favored in weak-scale UED

- E.g. even in the **most constrained** 5D mUED model,
 - ★ **Assuming** all boundary terms vanishing at UV cutoff,
- Higgs can be as heavy as <u>800GeV</u>.
 - \star For weak-scale UED, say M_{KK}<2v_{EW}, we get M_H>300GeV.

Baak et al. 1107.0975

Heavy Higgs in UED models

- This is a general tendency.
 - ★ KK top loops not only in 5D mUED.
 - ★ Insensitive to KK mass splitting $M_n \rightarrow M_n + \delta M_n$.
 - * (That comes from brane-localized Lagrangian.)

Outline: UED Higgs at LHC

- 1. Want signal independent of detailed boundary structure
- 2. Heavy Higgs from KK-top loops
- 3. Enhanced gluon fusion from KKtop loops

UED Higgs at LHC

SM figures

- gg→H production enhanced since
 loop-produced.
- Decays the same as in SM.
 - ★ H→WW,ZZ,tt,bb not much affected since there's **tree** coupling.

UED Higgs at LHC

- gg→H production enhanced since
 loop-produced.
- Decays the same as in SM.
 - ★ H→WW,ZZ,tt,bb not much affected since there's **tree** coupling.

Gluon fusion in UED

- Again, <u>insensitive</u> to <u>detailed</u>
 KK mass splitting.
- We have computed:
 - ★ In 5D:
 - * S¹/Z₂ & Dirichlet Higgs.
 - ★ In 6D T²-based:
 - * T^2/Z_4 , T^2/Z_2 , $T^2/(Z_2 \times Z_2') \& \underline{RP^2}$.
 - ★ In 6D S²-based:
 - * S^2 , S^2/Z_2 & Projective Sphere.
 - ◆ <u>Underlined ones</u> are newly computed by ourselves.

ZZ→41 is the golden channel.

• Essentially **all** the current $>2\sigma$ bumps are due to $ZZ\rightarrow 4I$.

ZZ→41 is the golden channel.

• Essentially **all** the current $>2\sigma$ bumps are due to $ZZ\rightarrow 4I$.

ZZ→41 is the golden channel.

• Essentially **all** the current $>2\sigma$ bumps are due to $ZZ\rightarrow 4l$.

ZZ→41 is the golden channel. (cont.)

- Also the case at ATLAS in EPS (1fb⁻¹) data.
- So clean that just few events suffice to make a bump in significance.

ZZ → 4 leptons M_H = <u>250</u>GeV

- 7TeV, 1fb⁻¹, 10GeV bin.
- $M_{KK} = 200,400,600,800 \text{GeV}$ (250 GeV for DH).

ZZ → 4 leptons M_H = <u>250</u>GeV

- 7TeV, 1fb⁻¹, 10GeV bin.
- $M_{KK} = 200,400,600,800 \text{GeV}$ (250 GeV for DH).

- 250GeV excess at ATLAS may be accounted for by UED.
 - ★ Though became severer after LP (2fb $^{-1}$).
- 10fb⁻¹ would suffice to establish the resonance.

ZZ → 4 leptons M_H = <u>500</u>GeV

- 7TeV, 1fb⁻¹, 25GeV bin.
- $M_{KK} = 200,400,600,800 \text{GeV}$ (500 GeV for DH).

ZZ → 4 leptons M_H = <u>500</u>GeV

- 7TeV, 1fb⁻¹, 25GeV bin.
- $M_{KK}=200,400,600,800$ GeV (500GeV for DH).

Nishiwaki, KO, Okuda, Watanabe 1108.1764

• With 10fb⁻¹:

- ★A few (virtually background free) events in 5D UED.
- ★ May establish the peak in 6D UED.

ZZ → 4 leptons M_H = <u>700</u>GeV

- **14TeV**, 1fb⁻¹, 25GeV bin.
- $M_{KK}=200,400,600,800$ GeV (700GeV for DH).

ZZ → 4 leptons M_H = 700GeV

- **14TeV**, 1fb⁻¹, 25GeV bin.
- $M_{KK}=200,400,600,800$ GeV (700GeV for DH).

- With <u>upgraded 14TeV</u>, 10fb⁻¹:
 - ★A few (virtually background free) events in 5D UED.
 - ★ May establish the peak in 6D UED.

- For 5D (mUED on S¹/Z₂):
 - ★ We got by far the strongest collider bound: $M_{KK} > 700$ GeV at $M_H \in [130,140]$ GeV.
 - ★ For ~250GeV Higgs: $M_{KK} > 750$ GeV.
 - * Still able to account for ATLAS ZZ \rightarrow 4l 4events (with a lucky factor 2) from EPS (1fb⁻¹).
 - * Severer after LP (2fb $^{-1}$).

(GeV)

Summary

- UED is nice: DM & 3 families (6D).
- Due to **KK-top** loops:
 - ★ Weak-scale UED generically favors **heavy Higgs**.
 - \bigstar Higgs production $gg \rightarrow H$ is enhanced, which is:
 - * Insensitive to KK mass splitting, and thus,
 - * Complementary to other signatures.
- At LHC:
 - ★ When Higgs is light \in [130,140]GeV, $M_{KK} > 700$ GeV is obtained for 5D mUED. (By far the strongest collider bound.)
 - ★ Middle <u>250GeV</u> UED Higgs might account for ATLAS <u>ZZ→4I</u>. (Getting severer after LP.)
 - \bigstar Heavy 500 (700) GeV UED Higgs can be seen within 10fb⁻¹ of data at 7 (14) TeV. (6D UED easier to see than 5D.)

Discussion

- Possible issues:
 - ★ KK top loops for $H\rightarrow WW,ZZ$.
 - * Might change events by $\sim O(10)\%$.
 - * Same order as N(N)LO QCD corrections.
 - ♦ (NNLO PDF gives <~30% enhancement.)</p>
 - ★ SM background?
- Todo:
 - \star LP (2fb⁻¹) bound.
 - ★ Combined analysis with $H\rightarrow WW$.
 - \star H $\rightarrow \gamma \gamma$ tends to be reduced due to interference.

Discussion

- Possible issues:
 - ★ KK top loops for $H\rightarrow WW,ZZ$.
 - * Might change events by $\sim O(10)\%$.
 - * Same order as N(N)LO QCD corrections.
 - ♦ (NNLO PDF gives <~30% enhancement.)</p>
 - ★ SM background?
- Todo:
 - \star LP (2fb⁻¹) bound.
 - ★ Combined analysis with $H\rightarrow WW$.
 - \star H \rightarrow yy tends to be reduced due to interference.

