On IDM, dark matter and evolution of the Universe

Dorota Sokołowska

University of Warsaw, Faculty of Physics, Institute of Theoretical Physics

> SCALARS 2011 Warsaw, 27.08.2011

collaboration with I.F. Ginzburg , K.A. Kanishchev and M. Krawczyk [Phys.Rev.D82:123533,2010, arXiv:hep-ph/1009.5099, 1104.3326, 1107.1991]

Motivation

T.D. Lee, '73; Deshpande, Ma, '78 Barbieri, Hall, Rychkov '06; Cao, Ma, Rajasekaran '07

Two Higgs Doublet Model (2HDM):

- two scalar $SU(2)_W$ doublets Φ_S , Φ_D with the same hypercharge Y=1
- CP violation in the scalar sector (explicit or spontaneous violation)
- different types of extrema (possible violation of $U(1)_{EM}$)
 - \Rightarrow evolution of vacuum state in the past
- 2HDM with an exact Z_2 symmetry: Inert Doublet Model (IDM)
 - \rightarrow candidate for the dark matter
- Testing Inert Doublet Model:
 - properties of SM-like Higgs h_S (light and heavy)
 - properties of dark scalars D_H, D_A, D^{\pm}
 - collider constraints
 - astrophysical data

2HDM

We consider scalar potential V with an explicit D-symmetry of Z_2 type:

$$\begin{split} D: \quad & \Phi_S \to \Phi_S, \quad & \Phi_D \to -\Phi_D, \quad \text{SM fields} \to \text{SM fields} \\ V &= -\frac{1}{2} \Big[m_{11}^2 \Phi_S^\dagger \Phi_S + m_{22}^2 \Phi_D^\dagger \Phi_D \Big] + \frac{1}{2} \Big[\lambda_1 \Big(\Phi_S^\dagger \Phi_S \Big)^2 + \lambda_2 \Big(\Phi_D^\dagger \Phi_D \Big)^2 \Big] \\ & + \lambda_3 \Big(\Phi_S^\dagger \Phi_S \Big) \Big(\Phi_D^\dagger \Phi_D \Big) + \lambda_4 \Big(\Phi_S^\dagger \Phi_D \Big) \Big(\Phi_D^\dagger \Phi_S \Big) + \frac{1}{2} \lambda_5 \Big[\Big(\Phi_S^\dagger \Phi_D \Big)^2 + \Big(\Phi_D^\dagger \Phi_S \Big)^2 \Big] \end{split}$$

- All parameters $\in \mathbf{R}$ no CP violation
- Model I only Φ_S couples to fermions

The positivity constrains are required to have a stable vacuum:

$$\lambda_1 > 0, \quad \lambda_2 > 0, \quad R+1 > 0, \quad R_3 + 1 > 0$$
$$\lambda_{345} = \lambda_3 + \lambda_4 + \lambda_5, \quad R = \lambda_{345} / \sqrt{\lambda_1 \lambda_2}, \quad R_3 = \lambda_3 / \sqrt{\lambda_1 \lambda_2}$$

Positivity constrains \rightarrow extremum with the lowest energy is the global minimum (vacuum).

Other constraints: perturbativity, unitarity

Spontaneous Symmetry Breaking

The EW symmetric extremum:

$$\langle \Phi_S \rangle = \langle \Phi_D \rangle = 0$$

local minimum if $m_{11,22}^2 < 0$.

Barroso et al., '05

The general type of EWSB v.e.v:

$$\langle \Phi_S \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_S \end{pmatrix}, \quad \langle \Phi_D \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} u \\ v_D \end{pmatrix}$$

 $u \neq 0 \Longrightarrow U(1)_{EM}$ broken:

• charge breaking extremum (Ch)

 $u = 0 \Longrightarrow U(1)_{EM}$ conserved:

- $v_{S,D} \neq 0$ neutral mixed extremum (M)
- $v_D = 0$ neutral inert extremum (I_1)

Deshpande, Ma, '78; Barbieri, Hall, Rychkov, '06

• $v_S = 0$ neutral inertlike extremum (I_2)

Extrema: charge breaking and mixed

Charge breaking extremum Ch:

$$\langle \Phi_S \rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ v_S \end{array} \right), \quad \langle \Phi_D \rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{c} \mathbf{u} \\ 0 \end{array} \right)$$

- $U(1)_{EM}$ symmetry broken by $u \neq 0$ massive photon
- not a case that is realized now, a possible vacuum in the past if

$$\lambda_4 \pm \lambda_5 > 0, \quad R_3 < 1$$

requires a charged "dark matter" particle – excluded
 Ginzburg, Kanishchev, Krawczyk, Sokołowska '10

Mixed extremum M:

$$\langle \Phi_S \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_S \end{pmatrix}, \quad \langle \Phi_D \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_D \end{pmatrix}$$

- CP conserving, $\tan \beta = v_D/v_S$
- massive Z^0, W^{\pm} , massless photon, 5 physical Higgs bosons H^{\pm}, A, H, h
- no DM candidate

$$R < 1, \quad \lambda_4 + \lambda_5 < 0, \quad \lambda_5 < 0$$

Extrema: inert and inertlike

Deshpande, Ma, '78, Barbieri et al., '06

Inert extremum I_1 :

$$\langle \Phi_S \rangle = \begin{pmatrix} 0 \\ v_S \end{pmatrix}, \quad \langle \Phi_D \rangle = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

- Φ_S as in SM (SM-like Higgs boson h_S) • Φ_D – "dark" or inert doublet with 4 dark scalars (D_H, D_A, D^{\pm}) , no interaction with fermions
- exact *D*-symmetry both in Lagrangian and in the extremum
- only Φ_D has odd D-parity
 - → the lightest scalar is a candidate for the dark matter

Inertlike extremum I_2 :

$$\langle \Phi_S \rangle = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \langle \Phi_D \rangle = \begin{pmatrix} 0 \\ v_D \end{pmatrix}$$

- Φ_S and Φ_D exchange roles
- fermions massless at tree-level (Model I, only Φ_S couples to fermions)
- no DM candidate

Evolution of the Universe

Ivanov '08; Ginzburg, Kanishchev, Ivanov '09 Ginzburg, Kanishchev, Krawczyk, Sokołowska '10

- we assume that today Inert Model is realized, however, in the past some other extrema could have been lower
- we consider evolution of the Universe due to the thermal corrections to the potential
- ullet At finite T ground state is given by minimum of Gibbs potential:

$$V_G(T) = Tr(Ve^{-H/T})/Tr(e^{-H/T}) \equiv V(T=0) + \Delta V(T)$$

• $\Delta V(T)$ – leading corrections $\propto T^2$ given by diagrams:

⇒ fixed quartic terms, quadratic (mass) terms change with T

$$\Delta V(T) = \frac{1}{2}c_1T^2\Phi_S^{\dagger}\Phi_S + \frac{1}{2}c_2T^2\Phi_D^{\dagger}\Phi_D$$

Evolution of the Universe

From scalar, bosonic and fermionic contributions to $\Delta V \to m_{ii}^2(T)$:

$$m_{11}^2(T) = m_{11}^2 - c_1 T^2 , \quad m_{22}^2(T) = m_{22}^2 - c_2 T^2$$

$$c_1 = \frac{3\lambda_1 + 2\lambda_3 + \lambda_4}{6} + \frac{3g^2 + g'^2}{8} + \frac{g_t^2 + g_b^2}{2} , \quad c_2 = \frac{3\lambda_2 + 2\lambda_3 + \lambda_4}{6} + \frac{3g^2 + g'^2}{8}$$

- fermionic contribution in c_1 (Model I)
- $c_1 + c_2 > 0$ from positivity constrains
- c_1 and c_2 positive to restore EW symmetry in the past

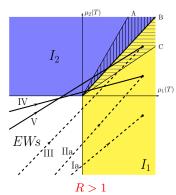
For a given T we determine:

- sign of $v_i^2 \Big|_{I_1,I_2,M} \to \text{possible existence of a given extremum}$
- values of λ_i (fixed) \rightarrow existence of a given local minimum
- value of extremum energy \rightarrow global minimum
- \Rightarrow sequences of possible phase transitions

Possible rays

The possible sequences of phase transitions (rays) on $(\mu_1(T), \mu_2(T))$ plane:

$$\mu_1(T) = m_{11}^2(T)/\sqrt{\lambda_1}, \quad \mu_2(T) = m_{22}^2(T)/\sqrt{\lambda_2}.$$



horizontal hatch – I_1 global, I_2 local min, vertical hatch – I_2 global, I_1 local min;

$$\begin{array}{l} A: \ \mu_2(T) = \mu_1(T)R, \\ B: \ \mu_2(T) = \mu_1(T), \\ C: \ \mu_2(T) = \mu_1(T)/R \end{array}$$

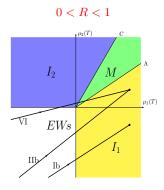
$EWs \rightarrow I_1$

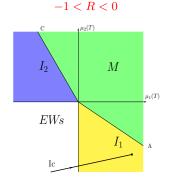
- ray $\mathbf{Ia} I_2$ is not an extremum
- ray IIa I₂ is an extremum, but never was a (local) minimum
- ray III I₂ is a local minimum, but never was a global minimum

$$EWs \rightarrow I_2 \rightarrow I_1$$

- ray $IV I_2$ is not a local minimum, but was a global minimum in the past
- ray $V I_2$ is a **local** minimum, it was a global minimum in the past

Possible rays





 $EWs \rightarrow I_1$

- rays **Ib**, $\mathbf{Ic} I_2$ is not an extremum
- rays $\mathbf{IIb} I_2$ is an extremum, but never was a (local) minimum

$$EWs \rightarrow I_2 \rightarrow M \rightarrow I_1$$

• ray $\mathbf{VI}-I_2, M$ were global minima in the past

Physical parameters

$$(\mu_1, \ \mu_2, \ R, \ c_1, \ c_2) \to (M_{h_S}, \ M_{D_H}, \ M_{D_A}, \ M_{D^{\pm}}, \ \lambda_{345}, \ \lambda_2)$$

 λ_{345} - triple and quartic coupling: $D_H D_H h_S$ and $D_H D_H h_S h_S$

- main annihilation channel $D_H D_H \to h_S \to f \bar{f}$: $\sigma \propto \lambda_{345}^2 / (M_{D_H}^2 - M_{h_S}^2)^2 \Rightarrow \text{constraints from relic density data}$
- DM-nucleon elastic scattering via h_S : $\sigma_{DM,N} \propto \lambda_{345}^2/(M_{D_H} + M_N)^2 \Rightarrow \text{direct detection experiments}$

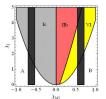
 λ_2 – quartic self-coupling $D_H D_H D_H D_H$

- no influence on DM relic density
- non-accesible in the colliders
- limits λ_{345} through positivity constraints

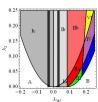
$(\lambda_{345}, \lambda_2)$ phase space

Sokołowska '11

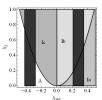
- fixed scalar masses, λ_{345} and λ_2 vary
- conditions for $(\mu_1, \mu_2) \to \text{conditions for } (\lambda_{345}, \lambda_2)$
- each ray in separate region
- change of $M_{D_H} \to \text{different rays possible}$



low DM mass



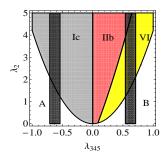
medium DM mass



high DM mass

Low DM mass region

- low DM mass $M_{D_H} \approx (3-8) \text{ GeV}$
- large mass splittings: $M_{D_A} \approx M_{D^{\pm}} \approx 100 \text{ GeV}$
- no coannihilation
- fits DAMA/Libra and CoGent signal, mimics singlet DM
- recent XENON100 data excluded by direct detection measurements



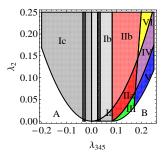
- limited number of rays
- large λ_2 needed, rather large λ_{345}
- T of final phase transition lower for large $\lambda_{345} \Rightarrow$ next order of correction to V needed

 $\begin{array}{lll} {\rm A-excluded~by~positivity~constraints} \\ {\rm B-\it{I}_{2}~is~a~global~minimum} \\ {\rm vertical~bounds-WMAP-allowed~region} \end{array}$

$$M_{D_H} = 5 \text{ GeV}, \ M_{D_A} = 105 \text{ GeV}, \ M_{D^\pm} = 110 \text{ GeV}, \ M_{h_S} = 120 \text{ GeV}$$

Medium DM mass region

- medium DM mass $M_{D_H} \approx (45 160) \text{ GeV}$
- large (D_H, D^{\pm}) mass splittings: $M_{D^{\pm}} M_{D_H} \approx (50 90)$ GeV
 - large (D_H, D_A) mass splitting: $M_{D_A} M_{D_H} \approx (50 90) \text{ GeV}$ \Rightarrow no coannihilation
 - small (D_H, D_A) mass splitting: $M_{D_A} M_{D_H} < 8 \text{ GeV}$
 - \Rightarrow coannihilation



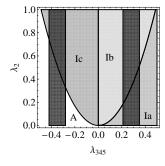
- all rays possible for all masses
- $\Omega_{DM}h^2$: strong dependence on M_{D_H} and $(M_{D_A} M_{D_H})$
- for rays VI, IV, V low T of final phase transition possible
- rays IV and V 1st order phase transition

A – excluded by positivity constraints B – I_2 is a global minimum vertical bounds – WMAP-allowed region

 $M_{D_H} = 50 \text{ GeV}, \ M_{D_A} = 120 \text{ GeV}, \ M_{D^{\pm}} = 120 \text{ GeV}, \ M_{h_S} = 120 \text{ GeV}$

High DM mass region

- high DM mass $M_{D_H} \approx (500 1000) \text{ GeV}$
- small mass splittings: $M_{D_H} \approx M_{D_A} \approx M_{D^{\pm}}$
- coannihilation between all dark particles
- only light Higgs h_S possible (EWPT)



- only rays Ia, Ib, Ic
- other rays require $\lambda \approx O(20)$
- further limits from unitarity

 $\begin{array}{lll} A-excluded \ by \ positivity \ constraints \\ vertical \ bounds-WMAP-allowed \ region \end{array}$

 $M_{D_H} = 800 \text{ GeV}, M_{D_A} = 801 \text{ GeV}, M_{D^{\pm}} = 801 \text{ GeV}, M_{h_S} = 120 \text{ GeV}$

Conclusions

- Today Inert Model (dark matter).
- Different types of extrema can be realized in the past.
- Possible sequences of phase transitions:

$$EWs \rightarrow I_2 \rightarrow M \rightarrow I_1$$

 $EWs \rightarrow I_2 \rightarrow I_1$
 $EWs \rightarrow I_1$

- λ_2 important for the evolution.
- Different behaviour for low, medium and high DM mass region.
- Need for the further corrections to V.