LEPTON NUMBER VIOLATION: SCALES AND MECHANISMS

A. Aparici, F. Del Aguila, S. Bhattacharya, A. Santamaria, J. Wudka

Lepton number

"Standard" scenario:

NP $\rightarrow \nu$ mass $\rightarrow 0\nu\beta\beta \rightarrow \Lambda \sim 10^{6}$ TeV (m_D = m_µ)

An interesting alternative:

NP
$$\rightarrow$$
 $0\nu\beta\beta$ \rightarrow ν mass \rightarrow Λ \sim 1 TeV

N.B.:
$$\Gamma_{SM}(0\nu\beta\beta) \equiv 0$$

Low-energy LNV effects

Write down all relevant effective operators exhibiting LNV ... what *is* relevant?

Choose the low energy fields
 What is the scalar sector like?
 Are there v_R? How many?

-Decide whether the new physics is strongly or weakly coupled For strong coupling: some of the light fields should participate (in practice some of the hypotheticals e.g. v_R)

- Do not use the effective theory above $\varLambda !$

- Operator hierarchies

-Weakly coupled new physics: canonical dimension, loop or tree generated

- Strongly coupled new physics: naïve dimensional analysis

N.B. loop-generated: for *all* models tree-generated: there is *a* model

-Can determine the types of heavy physics that can generate any set of operators Testing the consistency of the resulting "reverse engineered" model(s) is straightforward, but tedious

Example

Low energy fields: SM (1 scalar isodoublet)

New physics: weakly coupled

Leading LNV operator (Weinberg):

$$\frac{1}{\Lambda} \left(\bar{\ell} \phi \right)^2$$

Generated at tree level by

LNV scale

Best limits: $0\nu\beta\beta$ decay - considered later

Other limits:

$$BR(Z o p\ell) < 1.8 imes 10^{-6} \ 95\% ext{CL}$$
 $\mathcal{L} = rac{1}{\Lambda^4} (\bar{q} \tilde{\phi} \gamma^\mu e^c) (\bar{d} D_\mu u^c) \quad \Rightarrow \quad \Lambda_{ ext{LNV}} > 500 ext{GeV}$

$$BR(\tau \to p\gamma) < 3.5 \times 10^{-6} \ 90\% \text{CL}$$
$$\mathcal{L} = \frac{1}{\Lambda^4} (\bar{q}\tilde{\phi}\gamma^{\mu}e^c)(\bar{d}D_{\mu}u^c) \quad \Rightarrow \quad \Lambda_{\text{LNV}} > 600 \text{GeV}$$

$$\left. \begin{array}{c} \tau \to \ell \pi \pi, \, \Lambda \pi \\ K^+ \to \pi^- \ell \ell \\ D^+ \to \pi^- \ell \ell, \, pe \\ \Xi^- \to p \mu \mu \end{array} \right\} \quad \Rightarrow \quad \Lambda_{\rm LNV} > O(100 {\rm GeV})$$

N.B. These limits in general refer to different types of heavy physics

$0\nu\beta\beta$ decay

Of interest in probing LNV Structure of the ν mass sector Best limit from the Heidelberg-Moscow experiment: $T_{1/2} = 1.8 \times 10^{25}$ years

Violates B-L: absolutely forbidden in the SM

Next: what kinds of new physics can be responsible: ... What does the H-M experiment constrain? ... What will GENIUS-II probe?

Possible new physics effects:

Effective operators with no quarks:

A given type of NP may generate any of the first 3 operators without generating the other 2 (at tree level)

Effective operators with quarks:

vertex	effective operators	dim.	lepton chirality
$ u e ar{u} d$	$ \begin{aligned} &(\bar{\ell}\epsilon D_{\mu}\ell^{c})(\bar{u}\gamma^{\mu}d)\\ &(\bar{\ell}\tilde{\phi}d)(\bar{u}e^{c})+\text{Fierz T.} \end{aligned} $	7 7	$LL \\ LR$
$eeWar{u}d$	$ \begin{array}{l} (\bar{\ell}\epsilon D_{\mu}\ell^{c})(\bar{u}\gamma^{\mu}d) \\ (\phi^{\dagger}D_{\mu}\tilde{\phi})(\bar{\ell}\gamma^{\mu}e^{c})\epsilon)\bar{q}d) \\ (\phi^{\dagger}D_{\mu}\tilde{\phi})(\bar{e}\gamma^{\mu}d)(\bar{u}e^{c}) \end{array} \end{array} $	7 7 7	LL LR LR
$eear{u}ar{u}dd$	$(\bar{e}\gamma^{\mu}d)(\bar{u}\gamma_{\mu}d)(\bar{u}e^{c})\cdots$	9	LL, LR, RR

Operators, **vertices** & **amplitudes**:

 $\begin{array}{l} \text{Amplitude} \simeq \mathcal{A}/(Q^2 v^3) \\ \epsilon = v/\Lambda \\ \eta = Q/v \simeq 5.7 \times 10^{-4} \end{array}$

 $\overline{(\bar{\ell}\tilde{\phi})(\bar{\phi}^T\ell^c)} \to \mathcal{A} = \epsilon$

 $(\phi^{\dagger} D_{\mu} \tilde{\phi}) \left| \bar{e} \gamma^{\mu} (\tilde{\phi}^{T} \ell^{c}) \right| \to \mathcal{A} = \eta \epsilon^{3}$

 $(\phi^{\dagger} D^{\mu} \tilde{\phi})^2 (\bar{e} e^c) \to \mathcal{A} = \eta^2 \epsilon^3$

 $(\bar{\ell}\epsilon D_{\mu}\ell^{c})(\bar{u}\gamma^{\mu}d) \to \mathcal{A} = \eta^{2}\epsilon^{3}$

 $(\bar{\ell}\epsilon D_{\mu}\ell^{c})(\bar{u}\gamma^{\mu}d) \to \mathcal{A} = \eta\epsilon^{3}$

 $(\bar{e}\gamma^{\mu}d)(\bar{u}\gamma_{\mu}d)(\bar{u}e^{c}) \to \mathcal{A} = \eta^{2}\epsilon^{3}$

Example (Brahmachari & Ma):

For the contributions

 $\leftrightarrow \quad (\phi^{\dagger} D^{\mu} \tilde{\phi})^2 (\bar{e} e^c)$

 ν masses generated at 2 loops:

$$\underline{\nu_{\rm L}} \stackrel{\mathbf{e}_{\rm R}}{\longrightarrow} \rightarrow (m_{\nu})_{ij} \sim \frac{1}{\Lambda} \frac{m_i m_j}{2048\pi^4}$$

$$\left.m_{
u}
ight)_{ee}\sim 10^{-6}{
m eV}$$
 Fit u data? $ightarrow$ Specific model

Testable model

Interested in generating

 $\bullet \ (\phi^{\dagger} D^{\mu} \tilde{\phi})^2 (\bar{e} e^c)$

Many possibilities. We chose SM + 3 scalars:

Lagrangian:

$$\mathcal{L} = \mathcal{L}_{\rm SM} + |Dk|^2 + |D\chi|^2 + \frac{1}{2}(\partial\sigma)^2 - V_0(\phi \times \phi^{\dagger}, |k|^2, \chi^{\dagger}\chi, \sigma) \\ - \left[\mu_k k^{\dagger} \operatorname{tr}(\chi^2) - \lambda_6 \sigma \phi^{\dagger} \chi \tilde{\phi} + \text{H.c.} \right] \\ + \left[Y_{rs} \bar{\ell}_r e_s \phi + g_{rs} \overline{e^c}_r e_s k + \text{H.c.} \right]$$

$$\begin{split} &N_{\ell} \text{ conservation: no } \nu_{L} \text{ Maj. masses} \\ &N_{e} \text{ conservation: no } 0\nu e_{R}e_{R} \text{ decay} \\ &Z_{2} \text{ forbids } \chi - \text{lepton coupling (spont. broken by } \langle \sigma \rangle \neq 0) \\ &Y \to 0 \text{: } \begin{array}{l} &N_{\ell} \text{ and } N_{e} \text{ decouple: } M_{\text{Maj}}(\nu_{L}) = 0 \\ &N_{e} \text{ if } \mu_{\kappa} \cdot \lambda_{6} \cdot g_{rs} \neq 0 \text{: } 0\nu\beta\beta \neq 0 \end{array} \\ &M_{\text{Maj}}(\nu_{L}) \neq 0 \quad \Rightarrow \quad \mu_{\kappa} \cdot \lambda_{6} \cdot g_{rs} \cdot Y \neq 0 \end{split}$$

Particle content:

 $\chi = \begin{pmatrix} \chi^+ / \sqrt{2} & \chi^{++} \\ \chi^0 & -\chi^+ / \sqrt{2} \end{pmatrix} \qquad \phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}.$ $k, \ \chi^{++} \to k_{1,2} \quad (\text{mixing } \propto \langle \chi \rangle)$ $\phi^+, \ \chi^+ \to H^+, \ G^+ \text{ (eaten)}$ $\mathbf{Re}\chi^0, \mathbf{Re}\phi^0, \sigma \to h, \ h', \ h''$ $\mathbf{Im}\chi^0, \mathbf{Im}\phi^0 \to A, G^0 \text{ (eaten)}$

⟨χ⟩ ≪ m_{χ,k} and |m_χ - m_k| > ⟨φ⟩: k₁ ≃ k, k₂ ~ χ⁺⁺
k: no WW coupling, 2(Z/γ) couplings OK
χ: no ee coupling

Some bounds:

Process	Bound (90% CL)
$\mu^- ightarrow e^+ e^- e^-$	$ g_{e\mu}g_{ee} < 2.3 \times 10^{-5} (m_{\kappa}/\text{TeV})^2$
$\tau^- ightarrow e^+ e^- e^-$	$ g_{e\tau}g_{ee} < 0.025 (m_{\kappa}/{ m TeV})^2$
$\tau^- ightarrow e^+ e^- \mu^-$	$ g_{e au}g_{e\mu} < 0.017 (m_\kappa/{ m TeV})^2$
$ au^- ightarrow e^+ \mu^- \mu^-$	$ g_{e au}g_{\mu\mu} < 0.020 (m_\kappa/{ m TeV})^2$
$\tau^- ightarrow \mu^+ e^- e^-$	$ g_{\mu au} g_{ee} < 0.019 (m_\kappa / { m TeV})^2$
$\tau^- ightarrow \mu^+ e^- \mu^-$	$ g_{\mu au} g_{e \mu} < 0.018 (m_\kappa / { m TeV})^2$
$ au^- ightarrow \mu^+ \mu^- \mu^-$	$ g_{\mu au} g_{\mu \mu} < 0.025 (m_\kappa / { m TeV})^2$
$\mu^+ e^- \rightarrow \mu^- e^+$	$ g_{ee}g_{\mu\mu} < 0.2 (m_\kappa/{ m TeV})^2$

$$\langle \chi \rangle = \frac{\lambda_6 \langle \sigma \rangle \langle \phi \rangle^2}{m_{\chi}^2} \qquad \frac{\langle \chi \rangle}{\langle \phi \rangle} = \sqrt{\frac{1-\rho}{2}} \text{ (tree - level)}$$

Loop corrections: opposite sign $~~\delta
ho|_{
m loop}$

$$_{\rm p} \sim \left(\frac{m_{\chi}}{4\pi \left<\phi\right>}
ight)^2$$

Will take $\langle \chi \rangle < 10 \text{GeV}$

ονββ:

Integrate-out κ and χ :

$$\mathcal{L}_{ ext{eff}} = rac{f}{\Lambda^5} (\phi^{\dagger} D \tilde{\phi})^2 \bar{e} e^c = -rac{g^2 \mu_{\kappa} \langle \chi \rangle^2}{m_{\chi}^2 m_{\kappa}^2} g_{ee}^* \, \bar{e} e^c \, (W^-)^2 + \cdots$$

$$\Lambda^{5} = \frac{m_{\chi}^{4} m_{k}^{2}}{\mu_{k}} \qquad f = 2\left(\frac{m_{\chi}\langle\chi\rangle}{\langle\phi\rangle^{2}}\right)^{2} = 2\left(\frac{\lambda_{6}\langle\sigma\rangle}{m_{\chi}}\right)^{2} \qquad \langle\chi\rangle = \frac{\lambda_{6}\langle\sigma\rangle\langle\phi\rangle^{2}}{m_{\chi}^{2}}$$

$$6 \times 10^{-10} \stackrel{\text{GEN}}{<} \frac{M_p}{\mu_k} \left(\frac{\mu_k \langle \chi \rangle}{m_k m_\chi}\right)^2 |g_{ee}| < 4 \times 10^{-8} (90\% \text{ c.l.})$$

Majorana masses:

 $-7.5 + 2\left(\log m_k + \log m_\chi\right) \stackrel{\text{GEN}}{<} \log |m_{ee}| < -5.7 + 2\left(\log m_k + \log m_\chi\right)$

$$\log [|m_{ee}||m_{e\mu}|] < -11.9 + 4 \log (m_k)$$
(m_{k,\chi} in TeV)

Consistent with the current data?

$$m_{\nu} = U \begin{pmatrix} m_1 & & \\ & m_2 & \\ & & m_3 \end{pmatrix} U^T$$

$$U = \begin{pmatrix} c_{13}c_{12} & c_{13}s_{12}s_{13}e^{i\delta} \\ -c_{23}s_{12} - s_{23}s_{13}c_{12}e^{i\delta} & c_{23}c_{12} - s_{23}s_{13}s_{12}e^{i\delta} & s_{23}c_{13} \\ s_{23}s_{12} - c_{23}s_{13}c_{12}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{13}s_{12}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} e^{i\alpha_1/2} \\ e^{i\alpha_2/2} \\ & 1 \end{pmatrix}$$
$$\Delta m_{21}^2 = 7.64^{+0.19}_{-0.18} \times 10^{-5} \text{eV}^2 \qquad \Delta m_{31}^2 = (2.45 \pm 0.09) \times 10^{-3} \text{eV}^2$$
$$s_{12}^2 = 0.316 \pm 0.016 \qquad s_{23}^2 = 0.51 \pm 0.06 \qquad s_{13}^2 = 0.017^{+0.007}_{-0.009}$$

 $\overline{m_{k,\chi}} = 1 \text{TeV}$

Conclusions

LNV effects can have a light scale ... consistent with ν data and the $0\nu\beta\beta$ constraint

The scale can be low enough to be probed at the LHC

k and χ^{++} probed at LEP and Tevatron: m_{k, χ} > 100 GeV

Phenomenology: in progress some initial LHC limits already available

At the LHC: $qq \rightarrow Z \gamma \rightarrow k k: m_k > few \times 100 \text{ GeV}$

