The THDM	Bilinears in the THDM	CP transformations	MCPM	Conclusion

Studies of the two-Higgs-doublet model

M. Maniatis in collab. with O. Nachtmann, A. Manteuffel

Scalars 2011

M. Maniatis

University of Bielefeld

The THDM	Bilinears in the THDM	CP transformations	MCPM	Conclusion

The two-Higgs-doublet model (THDM)

Bilinears in the THDM

CP transformations

Maximally CP-invariant model (MCPM)

M. Maniatis

University of Bielefeld

The THDM Bi	linears in the THDM	CP transformations	MCPM	Conclusion

The two-Higgs-doublet model

M. Maniatis

University of Bielefeld

The THDM	Bilinears in the THDM	CP transformations	MCPM	Conclusion
0				

In the SM we have one Higgs doublet

$$\varphi = \begin{pmatrix} \varphi^+ \\ \varphi^0 \end{pmatrix}$$

Gauge invariant and renormalizable Higgs potential

$$V_{\mathsf{SM}} = -\mu(\varphi^{\dagger}\varphi) + \lambda(\varphi^{\dagger}\varphi)^2$$

In the THDM the Higgs sector is extended

$$\varphi_1 = \begin{pmatrix} \varphi_1^+ \\ \varphi_1^0 \end{pmatrix}, \quad \varphi_2 = \begin{pmatrix} \varphi_2^+ \\ \varphi_2^0 \end{pmatrix}$$

- ► THDM has five physical Higgs bosons: ρ' , h', h'', H^{\pm} .
- Prominent example: Susy models like the MSSM

M. Maniatis

University of Bielefeld

The THDM	Bilinears in the THDM	CP transformations	MCPM	Conclusion
00				

THDM Higgs potential

H. E. Haber and R. Hempfling, PRD 48 (1993)

$$\begin{split} V &= m_{11}^{2}(\varphi_{1}^{\dagger}\varphi_{1}) + m_{22}^{2}(\varphi_{2}^{\dagger}\varphi_{2}) - \left[m_{12}^{2}(\varphi_{1}^{\dagger}\varphi_{2}) + h.c.\right] \\ &+ \frac{\lambda_{1}}{2}(\varphi_{1}^{\dagger}\varphi_{1})^{2} + \frac{\lambda_{2}}{2}(\varphi_{2}^{\dagger}\varphi_{2})^{2} \\ &+ \lambda_{3}(\varphi_{1}^{\dagger}\varphi_{1})(\varphi_{2}^{\dagger}\varphi_{2}) + \lambda_{4}(\varphi_{1}^{\dagger}\varphi_{2})(\varphi_{2}^{\dagger}\varphi_{1}) \\ &+ \left[\frac{\lambda_{5}}{2}(\varphi_{1}^{\dagger}\varphi_{2})^{2} + \lambda_{6}(\varphi_{1}^{\dagger}\varphi_{1})(\varphi_{1}^{\dagger}\varphi_{2}) + \lambda_{7}(\varphi_{2}^{\dagger}\varphi_{2})(\varphi_{1}^{\dagger}\varphi_{2}) + h.c.\right], \end{split}$$

with m_{11}^2 , m_{22}^2 , $\lambda_{1,2,3,4}$ real and m_{12}^2 , $\lambda_{5,6,7}$ complex.

M. Maniatis

The THDM	Bilinears in the THDM	CP transformations	MCPM	Conclusion

Bilinears in the THDM

M. Maniatis

University of Bielefeld

The THDM	Bilinears in the THDM	CP transformations	MCPM	Conclusion
oo	●000000000		0000	o
Bilinears				

J. Velhinho, R. Santos and A. Barroso, PLB 322 (1994), O. Nachtmann, A. Manteuffel, MM EPJC 48 (2006), Nishi PRD 74 (2006)

► General SU(2)_L × U(1)_Y gauge invariant terms of the potential for doublets:

$$\varphi_i^{\dagger}\varphi_j, \qquad (i,j=1,2).$$

 Arrange invariant scalar products into Hermitian 2 × 2 matrix

$$\underline{K} := \begin{pmatrix} \varphi_1^{\dagger} \varphi_1 & \varphi_2^{\dagger} \varphi_1 \\ \varphi_1^{\dagger} \varphi_2 & \varphi_2^{\dagger} \varphi_2 \end{pmatrix}$$

Decomposition by completeness of Pauli matrices and 12

$$\underline{K}_{ij} = \frac{1}{2} \, \left(\mathbf{K}_0 \, \delta_{ij} + \mathbf{K}_a \, \sigma^a_{ij} \right).$$

M. Maniatis

The THDM	Bilinears in the THDM	CP transformations	MCPM	Conclusion
	00000000			

4 real coefficients - bilinears - defined by this decomposition

$$\mathbf{K}_{\mathbf{0}} = \varphi_i^{\dagger} \varphi_i, \qquad \mathbf{K}_{\mathbf{a}} = (\varphi_i^{\dagger} \varphi_j) \sigma_{ij}^a, \quad (a = 1, 2, 3).$$

Inversion reads

$$\begin{aligned} \varphi_1^{\dagger}\varphi_1 &= (K_0 + K_3)/2, \qquad \varphi_1^{\dagger}\varphi_2 &= (K_1 + iK_2)/2, \\ \varphi_2^{\dagger}\varphi_2 &= (K_0 - K_3)/2, \qquad \varphi_2^{\dagger}\varphi_1 &= (K_1 - iK_2)/2. \end{aligned}$$

M. Maniatis

The THDM 00	Bilinears in the THDM oo●ooooooo	CP transformations	MCPM 0000	Conclusion o
► In	terms of			
	K_0	$, \qquad \mathbf{K} \equiv \begin{pmatrix} \mathbf{K}_1 \\ \mathbf{K}_2 \\ \mathbf{K}_3 \end{pmatrix}$		
th	e most general poter	ntial can now be w	ritten	
	$V = \xi_0 K_0 + \boldsymbol{\xi}^{\mathrm{T}} \boldsymbol{K}$	$\mathbf{X} + \eta_{00} \mathbf{K}_0^2 + 2\mathbf{K}_0 \boldsymbol{\eta}^{\mathrm{T}}$	$\mathbf{K} + \mathbf{K}^{\mathrm{T}}\mathbf{E}\mathbf{K},$	
► W	ith real parameters ξ_i	$_{0},\ \eta_{00},\ \boldsymbol{\xi},\ \boldsymbol{\eta},\ E=E$	T	

M. Maniatis

The THDM	Bilinears in the THDM	CP transformations	MCPM	Conclusion
	00000000			

Translation from conventional notation to bilinear space

$$\begin{split} \xi_0 &= \frac{1}{2} (m_{11}^2 + m_{22}^2) , \quad \xi = \frac{1}{2} \begin{pmatrix} -2 \operatorname{Re}(m_{12}^2) \\ 2 \operatorname{Im}(m_{12}^2) \\ m_{11}^2 - m_{22}^2 \end{pmatrix}, \\ \eta_{00} &= \frac{1}{8} (\lambda_1 + \lambda_2) + \frac{1}{4} \lambda_3 , \quad \eta = \frac{1}{4} \begin{pmatrix} \operatorname{Re}(\lambda_6 + \lambda_7) \\ -\operatorname{Im}(\lambda_6 + \lambda_7) \\ \frac{1}{2} (\lambda_1 - \lambda_2) \end{pmatrix}, \\ E &= \frac{1}{4} \begin{pmatrix} \lambda_4 + \operatorname{Re}(\lambda_5) & -\operatorname{Im}(\lambda_5) & \operatorname{Re}(\lambda_6 - \lambda_7) \\ -\operatorname{Im}(\lambda_5) & \lambda_4 - \operatorname{Re}(\lambda_5) & -\operatorname{Im}(\lambda_6 - \lambda_7) \\ \operatorname{Re}(\lambda_6 - \lambda_7) & -\operatorname{Im}(\lambda_6 - \lambda_7) & \frac{1}{2} (\lambda_1 + \lambda_2) - \lambda_3 \end{pmatrix}. \end{split}$$

University of Bielefeld

M. Maniatis

The THDM	Bilinears in the THDM	CP transformations	MCPM	Conclusion
	00000000			

 We can even go ahead and write in an abstract Minkowski space

$$K = \begin{pmatrix} K_0 \\ K_1 \\ K_2 \\ K_3 \end{pmatrix}$$

The potential can thus be written in a very symmetric form with real parameters, (η^T = η).

 $V = \xi_{\alpha} K_{\alpha} + \eta_{\alpha\beta} K_{\alpha} K_{\beta}, \qquad \alpha, \beta \in \{0, ..., 4\}$

M. Maniatis

University of Bielefeld

The THDM oo	Bilinears in the THDM	CP transformations	MCPM 0000	Conclusion o
Exampl	e: maximally C	o symmetric m	odel	

We consider the THDM with the Higgs potential

$$\begin{split} W(\varphi_1,\varphi_2) &= m_{11}^2 \left(\varphi_1^{\dagger} \varphi_1 + \varphi_2^{\dagger} \varphi_2 \right) \\ &+ \frac{1}{2} \lambda_1 \left((\varphi_1^{\dagger} \varphi_1)^2 + (\varphi_2^{\dagger} \varphi_2)^2 \right) \\ &+ \lambda_3 (\varphi_1^{\dagger} \varphi_1) (\varphi_2^{\dagger} \varphi_2) + \lambda_4 (\varphi_1^{\dagger} \varphi_2) (\varphi_2^{\dagger} \varphi_1) \\ &+ \frac{1}{2} \lambda_5 \left((\varphi_1^{\dagger} \varphi_2)^2 + (\varphi_2^{\dagger} \varphi_1)^2 \right), \end{split}$$

- Parameters m_{11}^2 , λ_1 , λ_3 , λ_4 , λ_5 are real.
- Potential invariant under $\varphi_1 \rightarrow -\varphi_1$.

The THDM	Bilinears in the THDM	CP transformations	MCPM	Conclusion
	0000000000			

► Translation to bilinears.

$$\xi_{0} = m_{11}^{2}, \qquad \xi = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$
$$\eta_{00} = \frac{1}{4}(\lambda_{1} + \lambda_{3}), \qquad \eta = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$
$$E = \frac{1}{4}\begin{pmatrix} \lambda_{4} + \lambda_{5} & 0 & 0 \\ 0 & \lambda_{4} - \lambda_{5} & 0 \\ 0 & 0 & \lambda_{1} - \lambda_{3} \end{pmatrix}$$

M. Maniatis

•

The THDM	Bilinears in the THDM	CP transformations	MCPM	Conclusion
	0000000000			

► Translation to bilinears.

$$\xi_{0} = m_{11}^{2}, \qquad \xi = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$
$$\eta_{00} = \frac{1}{4}(\lambda_{1} + \lambda_{3}), \qquad \eta = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$
$$E = \frac{1}{4}\begin{pmatrix} \lambda_{4} + \lambda_{5} & 0 & 0 \\ 0 & \lambda_{4} - \lambda_{5} & 0 \\ 0 & 0 & \lambda_{1} - \lambda_{3} \end{pmatrix}.$$

THDM potential

$$V = \xi_0 \boldsymbol{K}_0 + \boldsymbol{\xi}^{\mathrm{T}} \boldsymbol{K} + \eta_{00} {\boldsymbol{K}_0}^2 + 2 \boldsymbol{K}_0 \boldsymbol{\eta}^{\mathrm{T}} \boldsymbol{K} + \boldsymbol{K}^{\mathrm{T}} \boldsymbol{E} \boldsymbol{K},$$

M. Maniatis

University of Bielefeld

The THDM	Bilinears in the THDM	CP transformations	MCPM	Conclusion
	0000000000			

► Translation to bilinears.

$$\xi_{0} = m_{11}^{2}, \qquad \xi = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$
$$\eta_{00} = \frac{1}{4}(\lambda_{1} + \lambda_{3}), \qquad \eta = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$
$$E = \frac{1}{4}\begin{pmatrix} \lambda_{4} + \lambda_{5} & 0 & 0 \\ 0 & \lambda_{4} - \lambda_{5} & 0 \\ 0 & 0 & \lambda_{1} - \lambda_{3} \end{pmatrix}.$$

THDM potential

$$V = \xi_0 K_0 + \xi K + \eta_{00} K_0^2 + 2 K_0 \eta^T K + K^T E K,$$

M. Maniatis

The THDM	Bilinears in the THDM	CP transformations	MCPM	Conclusion
00	ooooooooooo		0000	o
Change	of basis			

Consider the following mixing of the doublets

$$\begin{pmatrix} \varphi_1' \\ \varphi_2' \end{pmatrix} = U \begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix}.$$

with unitary 2×2 matrix U.

The bilinears transform as

$$K'_0 = K_0, \qquad K'_a = R_{ab}(U)K_b,$$

where R is defined by

$$U^{\dagger}\sigma^{a}U = R_{ab}\,\sigma^{b}.$$

with matrix $R \in SO(3)$, that is proper rotations in *K*-space.

M. Maniatis

University of Bielefeld

The THDM	Bilinears in the THDM	CP transformations	MCPM	Conclusion
	0000000000			

► Under a change of basis $K \rightarrow K' = RK$ the THDM potential remains invariant if we transform the parameters

 $\begin{aligned} \xi'_0 &= \xi_0, \ \eta'_{00} = \eta_{00}, \\ \xi' &= R \,\xi, \ \eta' = R \,\eta, \ E' = R \, E \, R^{\rm T}. \end{aligned}$

$$V = \xi_0 K_0 + \xi^{\mathrm{T}} K + \eta_{00} K_0^2 + 2K_0 \eta^{\mathrm{T}} K + K^{\mathrm{T}} E K$$

= $\xi_0' K_0' + \xi'^{\mathrm{T}} R R^{\mathrm{T}} K' + \eta'_{00} K_0'^2 + 2K_0' \eta'^{\mathrm{T}} R R^{\mathrm{T}} K' + K'^{\mathrm{T}} R R^{\mathrm{T}} E' R R^{\mathrm{T}} K'$
= $\xi_0' K_0' + \xi'^{\mathrm{T}} K' + \eta'_{00} K_0'^2 + 2K_0' \eta'^{\mathrm{T}} K' + K'^{\mathrm{T}} E' K',$

► That is we may diagonalize *E* by a change of basis and have 11 parameters of the THDM.

M. Maniatis

The THDM	Bilinears in the THDM	CP transformations	MCPM	Conclusion
oo	○○○○○○○○●		0000	o
Symmetrie	es			

I. P. Ivanov **PRD 77** (2008), E. Ma, MM **PLB 683** (2010), P. M. Ferreira, O. Nachtmann, J. P. Silva, MM **JHEP 1008** (2010), P. M. Ferreira, H. E. Haber, O. Nachtmann, J. P. Silva, MM **IJMP A26** (2011)

• A transformation $K \rightarrow RK$, is a symmetry of the potential if and only if

 $\boldsymbol{\xi} = \boldsymbol{R} \boldsymbol{\xi}, \qquad \boldsymbol{\eta} = \boldsymbol{R} \boldsymbol{\eta}, \qquad \boldsymbol{E} = \boldsymbol{R} \boldsymbol{E} \boldsymbol{R}^{\mathrm{T}}.$

M. Maniatis

The THDM	Bilinears in the THDM	CP transformations	MCPM	Conclusion

CP transformations

M. Maniatis

University of Bielefeld

The THDM	Bilinears in the THDM	CP transformations	MCPM	Conclusion
		0000		

Standard CP transformation

J.F. Gunion, H.E.Haber Phys.Rev.D72 (2005), I.F.Ginzburg, M.Krawczyk Phys.Rev.D72 (2005), C.C. Nishi PRD 74 (2006), O. Nachtmann, A. Manteuffel, MM EPJ C57 (2008)

$$\varphi_i(x) \xrightarrow{\operatorname{CP}_{\mathrm{s}}} \varphi_i^*(x'), \quad i = 1, 2, \quad x' = \begin{pmatrix} x_0 \\ -x \end{pmatrix}$$

In terms of bilinears

$$K_0(x) \xrightarrow{\operatorname{CP}_s} K_0(x'), \quad \begin{pmatrix} K_1(x) \\ K_2(x) \\ K_3(x) \end{pmatrix} \xrightarrow{\operatorname{CP}_s} \begin{pmatrix} K_1(x') \\ -K_2(x') \\ K_3(x') \end{pmatrix}$$

This is a reflection on the 1-3 plane

$$\boldsymbol{K}(\boldsymbol{x}) \xrightarrow{\mathrm{CP}_{\mathrm{s}}} \bar{R}_{2}\boldsymbol{K}(\boldsymbol{x'}), \quad \text{with } \bar{R}_{2} := \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

M. Maniatis

The THDM	Bilinears in the THDM	CP transformations	MCPM	Conclusion
		0000		

With view on THDM Higgs potential

$$V = \xi_0 K_0 + \boldsymbol{\xi}^{\mathrm{T}} \boldsymbol{K} + \eta_{00} {K_0}^2 + 2K_0 \boldsymbol{\eta}^{\mathrm{T}} \boldsymbol{K} + \boldsymbol{K}^{\mathrm{T}} \boldsymbol{E} \boldsymbol{K}$$

 Potential is invariant under standard CP transformation if and only if there is a basis

$$\boldsymbol{\xi}' = R(U)\,\boldsymbol{\xi} = \begin{pmatrix} \cdot \\ 0 \\ \cdot \end{pmatrix}, \qquad \boldsymbol{\eta}' = R(U)\,\boldsymbol{\eta} = \begin{pmatrix} \cdot \\ 0 \\ \cdot \end{pmatrix},$$
$$\boldsymbol{E}' = R(U)\,\boldsymbol{E}\,\boldsymbol{R}^{\mathrm{T}}(U) = \begin{pmatrix} \cdot & 0 & \cdot \\ 0 & \cdot & 0 \\ \cdot & 0 & \cdot \end{pmatrix}.$$

M. Maniatis

The THDM	Bilinears in the THDM	CP transformations	MCPM	Conclusion
00		○○●○	0000	o
		Q. Nachtmann, A	C. C. Nishi PRD Manteuffel MM FP.I	74 (2006), C57 (2008)

CP invariance conditions - basis invariant.

$$\begin{split} \boldsymbol{\xi}^{\mathrm{T}} E & (\boldsymbol{\xi} \times \boldsymbol{\eta}) = 0, \qquad (E \boldsymbol{\xi})^{\mathrm{T}} E & (\boldsymbol{\xi} \times (E \boldsymbol{\xi})) = 0, \\ \boldsymbol{\eta}^{\mathrm{T}} E & (\boldsymbol{\xi} \times \boldsymbol{\eta}) = 0, \qquad (E \boldsymbol{\eta})^{\mathrm{T}} E & (\boldsymbol{\eta} \times (E \boldsymbol{\eta})) = 0. \end{split}$$

Potential is explicitly CP conserving if and only if these conditions are fulfilled.

These conditions agree with former set of conditions, but are much simpler.

M. Maniatis

The THDM	Bilinears in the THDM	CP transformations	MCPM	Conclusion
oo		○○○●	0000	o
Generaliz	ed CP transfo			

G.Ecker, W.Grimus, W.Konetschny, NPB 191 (1981)

$$\varphi_i(x) \xrightarrow{\operatorname{CP}_g} U_{ij} \varphi_j^*(x'), \quad i,j=1,2$$

The bilinears transform as

O. Nachtmann, A. Manteuffel, MM **EPJC 57** (2007), O. Nachtmann, MM **JHEP 0905** (2009), P. Ferreira, J. Silva, **PR D83** (2011) $K_0(x) \xrightarrow{\text{CP}_g} K_0(x'), \quad \textbf{\textit{K}}(x) \xrightarrow{\text{CP}_g} \overline{\textbf{\textit{RK}}}(x')$

with improper rotation \bar{R} .

- Requiring $\bar{R}^2 = \mathbb{1}_3$ there are two types
 - (*i*) $\bar{R} = -\mathbb{1}_3$, point reflection

(*ii*) $\bar{R} = R^{T} \bar{R}_{2} R$, orthogonal equivalent to \bar{R}_{2} reflection

M. Maniatis

University of Bielefeld

The THDM	Bilinears in the THDM	CP transformations	MCPM	Conclusion

Maximally CP-invariant model (MCPM)

M. Maniatis

University of Bielefeld

The THDM	Bilinears in the THDM	CP transformations	MCPM	Conclusion
00			0000	

Potential invariant under point reflections

$$\boldsymbol{K}(x) \xrightarrow{\operatorname{CP}_g^{(i)}} -\boldsymbol{K}(x')$$

$$V = \xi_0 K_0 + \boldsymbol{\xi}^{\mathrm{T}} \boldsymbol{K} + \eta_{00} {K_0}^2 + 2K_0 \, \boldsymbol{\eta}^{\mathrm{T}} \boldsymbol{K} + \boldsymbol{K}^{\mathrm{T}} \boldsymbol{E} \boldsymbol{K},$$

that is we have to have

$$\boldsymbol{\xi} = \boldsymbol{\eta} = 0$$

 Note that this potential is automatically invariant under reflections on planes.

M. Maniatis

The THDM	Bilinears in the THDM	CP transformations	MCPM	Conclusion
00			0000	

Potential invariant under point reflections

$$\boldsymbol{K}(x) \xrightarrow{\operatorname{CP}_g^{(i)}} -\boldsymbol{K}(x')$$

$$V = \xi_0 K_0 + \xi K + \eta_{00} K_0^2 + 2 K_0 \eta K + K^{\mathrm{T}} E K,$$

that is we have to have

$$\boldsymbol{\xi} = \boldsymbol{\eta} = 0$$

 Note that this potential is automatically invariant under reflections on planes.

M. Maniatis

	000000000	0000	0000				
Yukawa couplings in the MCPM							

- At least two families for non-vanishing couplings.
- Absence of FCNC fixes couplings.
- Yukawa couplings

$$\mathscr{L}_{\operatorname{Yuk},l}(x) = -c_{l3} \left\{ \bar{l}_{3R}(x) \varphi_1^{\dagger}(x) \begin{pmatrix} \nu_{3L}(x) \\ l_{3L}(x) \end{pmatrix} - \bar{l}_{2R}(x) \varphi_2^{\dagger}(x) \begin{pmatrix} \nu_{2L}(x) \\ l_{2L}(x) \end{pmatrix} \right\} + c.c.$$

- ► Via EWSB c_{l3} fixed, $m_{l_3} = c_{l3} \frac{v}{\sqrt{2}}$, $v \approx 246$ GeV.
- Yukawa coupling of 2nd family prop. to 3rd family mass!

M. Maniatis

M. Maniatis

University of Bielefeld

The THDM 00	Bilinears in the THDM	CP transformations	MCPM 000●	Conclusion o
Oblique	parameters			

- Check agreement with electroweak measurements.
- Oblique parameters restrict viable parameter space.

O. Nachtmann, MM, arxiv:1106.1436 [hep-ph]

M. Maniatis

University of Bielefeld

The THDM 00	Bilinears in the THDM	CP transformations	MCPM 0000	Conclusion •
Conclus	sion			

- Bilinears are quite powerful tool in general THDM potential.
- Basis-, CP transformations have simple geometric picture.
- Generalized CP transformations are point or plane reflections.
- Point-reflection invariance leads to a new maximally CP-invariant model (MCPM).
- Family replication in the MCPM.
- Phenomenology of the MCPM appealing.

- Tevatron luminosity 5 fb⁻¹, LHC luminosity 100 fb⁻¹/year.
- ► Assuming Higgs boson masses h', h", H[±] of 250 GeV

 $\sigma_{\text{T}evatron} \approx 2 \text{ pb}$ (10,000 events), $\sigma_{\text{LHC}} \approx 1000 \text{ pb}$ (100,000,000 events/year)

- Decay proceeds mainly hadronically into c- and s-quarks.
- c-tagging maybe experimentally to difficult?
- ► Branching ratio $\frac{\Gamma(H \to \mu^- \mu^+)}{\Gamma(H \to \text{all})} \approx 3 \cdot 10^{-5} \ (H = h', h'', H^{\pm}).$
- At Tevatron less than 1 event, at LHC we expect about 3000 events/year.

Maximmally CP

$SU(2)_L \times U(1)_Y$ breaking

► $SU(2)_L \times U(1)_Y$ breaking behavior in terms of K_0, K_1, K_2, K_3

$$\varphi_1 = \begin{pmatrix} \varphi_1^+ \\ \varphi_1^0 \end{pmatrix}, \quad \varphi_2 = \begin{pmatrix} \varphi_2^+ \\ \varphi_2^0 \end{pmatrix}, \qquad \underline{K} := \begin{pmatrix} \varphi_1^\dagger \varphi_1 & \varphi_2^\dagger \varphi_1 \\ \varphi_1^\dagger \varphi_2 & \varphi_2^\dagger \varphi_2 \end{pmatrix}$$

We have

$$\operatorname{Tr} \underline{K} = \varphi_1^{\dagger} \varphi_1 + \varphi_2^{\dagger} \varphi_2 = K_0 \ge 0$$
$$\det \underline{K} = (\varphi_1^{\dagger} \varphi_1)(\varphi_2^{\dagger} \varphi_2) - (\varphi_2^{\dagger} \varphi_1)(\varphi_1^{\dagger} \varphi_2) = K_0^2 - K_1^2 - K_2^2 - K_3^2 \ge 0$$

K₀, K restricted to lie in forward light cone.

Hypercharge o

 Different domains with respect to EWSB. Consider minimum (vacuum) with

$$K_0 = K_1 = K_2 = K_3 = 0$$

$$K_0^2 > K_1^2 + K_2^2 + K_3^2$$

$$K_0^2 = K_1^2 + K_2^2 + K_3^2$$

 $arphi_1 = arphi_2 = 0$ $SU(2)_L imes U(1)_Y$ unbroken

 φ_1, φ_2 linear independent Not possible to arrange $\varphi_1^+ = \varphi_2^+ = 0$ $SU(2)_L \times U(1)_Y$ fully broken

 φ_1, φ_2 linear dependent Possible to arrange $\varphi_1^+ = \varphi_2^+ = 0$ $SU(2)_L \times U(1)_Y$ partially broken.

M. Maniatis

Minkowski space structure of O. Nachtmann, A. Manteuffel, MM EPJC 48 (2006) bilinears

M. Maniatis

Spontaneous CP violation

- Potential invariant under CP transf. but vacuum not.
- Assume we have found a basis

$$\boldsymbol{\xi}' = \boldsymbol{R}(U)\,\boldsymbol{\xi} = \begin{pmatrix} \cdot \\ 0 \\ \cdot \end{pmatrix}, \qquad \boldsymbol{\eta}' = \boldsymbol{R}(U)\,\boldsymbol{\eta} = \begin{pmatrix} \cdot \\ 0 \\ \cdot \end{pmatrix},$$
$$\boldsymbol{E}' = \boldsymbol{R}(U)\,\boldsymbol{E}\,\boldsymbol{R}^{\mathrm{T}}(U) = \begin{pmatrix} \cdot & 0 & \cdot \\ 0 & \cdot & 0 \\ \cdot & 0 & \cdot \end{pmatrix}.$$

- Spontaneous CP violation is absent in this basis if and only if $\langle K_2 \rangle = 0$.
- Basis independent formulation:

$$egin{aligned} & (m{\xi} imes m{\eta})^{\mathrm{T}} \langle m{K}
angle &= 0, & (m{\xi} imes (Em{\xi}))^{\mathrm{T}} \langle m{K}
angle &= 0, \ & (m{\eta} imes (Em{\eta}))^{\mathrm{T}} \langle m{K}
angle &= 0. \end{aligned}$$

Translation of Higgs hypercharges

- In SUSY models the Higgs doublets (*H_u* and *H_d*) carry hypercharges y = +1/2 and y = −1/2.
- This can be translated to the convention used here by

$$\begin{split} \varphi_1^{\alpha} &= -\epsilon_{\alpha\beta} (H_u^{\beta})^*, \\ \varphi_2^{\alpha} &= H_d^{\alpha} \end{split}$$

with doublets

$$\varphi_i(x) = \begin{pmatrix} \varphi_i^+(x) \\ \varphi_i^0(x) \end{pmatrix}$$
 $(i = 1, 2).$

M. Maniatis

University of Bielefeld

THDM invariant under point reflections

In conventional notation we end up with

$$\begin{split} W(\varphi_1,\varphi_2) &= m_{11}^2 \left(\varphi_1^{\dagger} \varphi_1 + \varphi_2^{\dagger} \varphi_2 \right) + \frac{\lambda_1}{2} \left((\varphi_1^{\dagger} \varphi_1)^2 + (\varphi_2^{\dagger} \varphi_2)^2 \right) \\ &+ \lambda_3 (\varphi_1^{\dagger} \varphi_1) (\varphi_2^{\dagger} \varphi_2) + \lambda_4 (\varphi_1^{\dagger} \varphi_2) (\varphi_2^{\dagger} \varphi_1) \\ &+ \frac{\lambda_5}{2} \left((\varphi_1^{\dagger} \varphi_2)^2 + (\varphi_2^{\dagger} \varphi_1)^2 \right) \end{split}$$

invariant under the four generalised $\ensuremath{CP_g}$ transformations

$$\varphi_i(x) \xrightarrow{\operatorname{CP}_g} W_{ij} \varphi_j^*(x')$$

M. Maniatis

Unitary gauge

In the unitary gauge we have

$$\varphi_1(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v_0 + \rho'(x) \end{pmatrix}, \quad \varphi_2(x) = \begin{pmatrix} H^+(x)\\ \frac{1}{\sqrt{2}}(h'(x) + ih''(x)) \end{pmatrix}$$

real fields: $\rho'(x)$, h'(x) and h''(x)charged fields: $H^+(x)$, $H^-(x) \equiv (H^+(x))^*$

M. Maniatis

M. Maniatis

Yukawa coupling to one family

 Suppose, we couple one family of fermions to the Higgs doublets

$$\mathscr{L}_{\text{Yuk}}(x) = -\bar{l}_{1R}(x) c_{li} \varphi_i^{\dagger}(x) \begin{pmatrix} \nu_{1L}(x) \\ l_{1L}(x) \end{pmatrix} + h.c.$$

with c_{li} arbitrary complex numbers

• General ansatz for the $CP_g^{(i)}$ transformations of the fermions

$$\begin{pmatrix} \nu_{1L}(x) \\ l_{1L}(x) \end{pmatrix} \to e^{i\xi_1} \gamma^0 S(C) \begin{pmatrix} \bar{\nu}_{1L}^{\mathrm{T}}(x') \\ \bar{l}_{1L}^{\mathrm{T}}(x') \end{pmatrix}$$
$$l_{1R}(x) \to e^{i\xi_2} \gamma^0 S(C) \bar{l}_{1R}^{\mathrm{T}}(x') ,$$

(γ^0 and $S(C) := i\gamma^2\gamma^0$ as usual)

 The Yukawa coupling is invariant under the CP⁽ⁱ⁾ transformations only for

Yukawa coupling to two families

 Suppose, we couple two families of fermions to the Higgs doublets

$$\mathscr{L}_{\text{Yuk}}(x) = -\bar{l}_{\alpha R}(x) C_{l\alpha\beta}^{(j)} \varphi_j^{\dagger}(x) \begin{pmatrix} \nu_{\beta L}(x) \\ l_{\beta L}(x) \end{pmatrix}, \quad \alpha, \beta = 2, 3$$

with $C_l^{(1)}$ and $C_l^{(2)}$ complex matrices.

By field redefinitions one can always arrange that

$$C_l^{(1)} = \begin{pmatrix} c_{l2}^{(1)} & 0\\ 0 & c_{l3}^{(1)} \end{pmatrix}, \quad c_{l2}^{(1)} \ge 0, \quad c_{l3}^{(1)} \ge 0;$$

Also the CPg transformations may mix the families in this case

$$\begin{pmatrix} \nu_{\alpha L}(x) \\ l_{\alpha L}(x) \end{pmatrix} \to U_{L \alpha \beta}^{(l)} \gamma^0 S(C) \left(\bar{\nu}_{\beta L}^{\mathrm{T}}(x'), \bar{l}_{\beta L}^{\mathrm{T}}(x') \right) ,$$

M. Maniatis

University of Bielefeld

The Yukawa coupling is now invariant only if

$$U_R^{(l) \,\mathrm{T}} \, C_l^{(j) \,*} U_L^{(l) \,*} W_{ji} = C_l^{(i)} \,. \tag{1}$$

Now we must find $U_L^{(l)}$ and $U_R^{(l)}$ for all different W.

We call a Lagrangian fullfilling (1) maximal CP invariant

(

- Consider the case $c_{l2}^{(1)} > 0$, $c_{l3}^{(1)} > 0$, $c_{l2}^{(1)} \neq c_{l3}^{(1)}$
 - This corresponds to non-zero but different masses for l₂ and l₃.
 - The only possibility for $C_l^{(2)}$ is

$$C_l^{(2)} = \begin{pmatrix} 0 & c_{l23}^{(2)} \\ c_{l32}^{(2)} & 0 \end{pmatrix}$$

M. Maniatis

This would lead to large FCNC's

 Example of muon–nucleon scattering process revealing FCNCs

- Consider the case $c_{l2}^{(1)} = c_{l3}^{(1)} > 0$
- This gives equal lepton masses, which is phenomenologically not acceptable.

Hypercharge o

• Consider the remaining case $c_{l2}^{(1)} = 0$, $c_{l3}^{(1)} > 0$

- *l*₃ acquires a mass and *l*₂ is massless.
- The only possibility for $C_l^{(2)}$ is now

$$C_l^{(2)} = \begin{pmatrix} -c_{l3}^{(1)} & 0\\ 0 & 0 \end{pmatrix}$$

- We identify the two families with the II. and III. of the SM. The I. family is uncoupled.
- This seems to be justified to a certain extend.

	I			II				
u	2.4	MeV	С	1.27	GeV	t	172	GeV
d	4.8	MeV	S	105	MeV	b	4.2	GeV
е	0.511	MeV	μ	105.7	MeV	τ	1.777	GeV

Yukawa coupling Lagrangian

We end up with the Yukawa coupling

$$\mathscr{L}_{\text{Yuk},l}(x) = -c_{l3}^{(1)} \left\{ \bar{l}_{3R}(x) \varphi_{1}^{\dagger}(x) \begin{pmatrix} \nu_{3L}(x) \\ l_{3L}(x) \end{pmatrix} - \bar{l}_{2R}(x) \varphi_{2}^{\dagger}(x) \begin{pmatrix} \nu_{2L}(x) \\ l_{2L}(x) \end{pmatrix} \right\} + h.c.$$

After EWSB we get finally

$$\begin{aligned} \mathscr{L}_{\text{Yuk},l}(x) &= -m_{l3} \left(1 + \frac{\rho'(x)}{\nu_0} \right) \bar{l}_3(x) \, l_3(x) \\ &+ \frac{m_{l3}}{\nu_0} \, h'(x) \, \bar{l}_2(x) \, l_2(x) + i \frac{m_{l3}}{\nu_0} \, h''(x) \, \bar{l}_2(x) \gamma_5 l_2(x) \\ &+ \frac{\sqrt{2} \, m_{l3}}{\nu_0} \left[H^+(x) \, \bar{\nu}_2(x) \omega_R l_2(x) \right. + H^-(x) \, \bar{l}_2(x) \omega_L \nu_2(x) \right] \end{aligned}$$

- ▶ Higgs—fermion couplings for II. family is prop. to *m*₁₃
- The quark couplings are derived analogously.

M. Maniatis

University of Bielefeld

Higgs decay

Study of Higgs decay

 $H_1(k) \to f'(p_1) + \bar{f}(p_2)$

- Decay rates can easily calculated from Lagrangian
- For the dominant contributions

$$h'
ightarrow c \bar{c}, \quad h''
ightarrow c \bar{c}, \quad H^+
ightarrow c \bar{s}, \quad H^-
ightarrow s \bar{c}$$

we find rates of $\Gamma \approx 12$ GeV for $m_{H_1} = 200$ GeV.

Study of Higgs decays

$$H_1(k) \to H_2(p_1) + V(p_2)$$

 We find that this decay rates become relevant only for a very heavy Higgs boson.

M. Maniatis

Hypercharge o

~~~~~

Decay of neutral Higgs bosons into a gluon pair

$$\begin{aligned} H_1(k) &\to G(p_1) + G(p_2) \\ & \bullet \text{ Calculation yields, i.e. for } h' \\ & \Gamma(h' \to G + G) = \frac{\alpha_s^2 m_{h'}}{32\pi^3} \left| \frac{2m_t m_c}{v_0 m_{h'}} I\left(\frac{4m_c^2}{m_{h'}^2}\right) + \frac{2m_b m_s}{v_0 m_{h'}} I\left(\frac{4m_s^2}{m_{h'}^2}\right) \right|^2 \\ & I(z) = \int_0^1 dv \frac{1-v}{z-v-i\epsilon} \ln\left(\frac{1+\sqrt{1-v}}{1-\sqrt{1-v}}\right) \\ & = 2 + (1-z) \begin{cases} -\frac{1}{2} \left[ \ln\left(\frac{1+\sqrt{1-z}}{1-\sqrt{1-z}}\right) - i\pi \right]^2 & \text{for } 0 < z < 1 \\ 2 [\arcsin(\sqrt{1/z})]^2 & \text{for } z \ge 1 \end{cases} \end{aligned}$$

This gives again tiny decay rates.

M. Maniatis

# Higgs boson production in Drell-Yan



M. Maniatis

University of Bielefeld

Hypercharge o

## Neutral Higgs boson production via gluon fusion





Explicit calculation gives

$$\begin{aligned} \sigma(p(p_1) + p(p_2) \to H_1 + X)|_{GG-\text{fusion}} &= \\ \frac{\pi^2 \ \Gamma(H_1 \to GG)}{8 \ s \ m_{H_1}} \int_0^1 dx_1 N_G^p(x_1) \int_0^1 dx_2 N_G^p(x_2) \delta\left(x_1 x_2 - \frac{m_{H_1}^2}{s}\right) \end{aligned}$$

M. Maniatis

Studies of the THDM

1

### Estimates of experimental detection of Higgs bosons

- At Tevatron we have data of 5 fb<sup>-1</sup>, at LHC we expect 100 fb<sup>-1</sup>/year.
- Assuming a Higgs boson mass h', h", H<sup>±</sup> of 250 GeV we find production cross sections of

 $\sigma_{Tevatron} \approx 2 \text{ pb, that is}$  10,000 events,  $\sigma_{LHC} \approx 1000 \text{ pb, that is } 100,000,000 \text{ events/year}$ 

- Decay proceeds mainly hadronically into c- and s-quarks.
- c-tagging maybe experimentally to difficult?

# Experimental Detection of Higgs bosons

On the other hand we find branching ratios of

$$\begin{split} \frac{\Gamma(h' \to \mu^- \mu^+)}{\Gamma(h' \to \text{all})} &\approx \frac{\Gamma(h'' \to \mu^- \mu^+)}{\Gamma(h'' \to \text{all})} \approx \frac{\Gamma(H^+ \to \mu^+ \nu_\mu)}{\Gamma(H^+ \to \text{all})} \approx \\ \frac{\Gamma(H^- \to \mu^- \bar{\nu}_\mu)}{\Gamma(H^- \to \text{all})} &\approx \frac{m_\tau^2}{3(m_t^2 + m_b^2) + m_\tau^2} \approx 3 \cdot 10^{-5} \; . \end{split}$$

- Number of Higgs-bonsons with subsequent decay into  $\mu$ :
  - At Tevatron less than 1 event.
  - At LHC we expect about 3000 events/year.

M. Maniatis

Hypercharge o

• Renormalization group equations for  $\lambda_{1,2,3,4,5,6,7}$ 

$$\begin{split} 8\pi^2 \frac{d\lambda_1}{dt} &= 6\lambda_1^2 + 2\lambda_3^2 + 2\lambda_3\lambda_4 + \lambda_4^2 + |\lambda_5|^2 + 12|\lambda_6|^2 \\ &-\lambda_1 \left(\frac{3}{2}g_1^2 + \frac{9}{2}g_2^2\right) + \frac{3}{8}g_1^4 + \frac{3}{4}g_1^2g_2^2 + \frac{9}{8}g_2^4, \\ 8\pi^2 \frac{d\lambda_2}{dt} &= 6\lambda_2^2 + 2\lambda_3^2 + 2\lambda_3\lambda_4 + \lambda_4^2 + |\lambda_5|^2 + 12|\lambda_7|^2 \\ &-\lambda_2 \left(\frac{3}{2}g_1^2 + \frac{9}{2}g_2^2\right) + \frac{3}{8}g_1^4 + \frac{3}{4}g_1^2g_2^2 + \frac{9}{8}g_2^4, \\ 8\pi^2 \frac{d\lambda_3}{dt} &= (\lambda_1 + \lambda_2)(3\lambda_3 + \lambda_4) + 2\lambda_3^2 + \lambda_4^2 + |\lambda_5|^2 + 2|\lambda_6|^2 + 2|\lambda_7|^2 + 4\lambda_6\lambda_7^* + 4\lambda_6^*\lambda_7 \\ &-\lambda_3 \left(\frac{3}{2}g_1^2 + \frac{9}{2}g_2^2\right) + \frac{3}{8}g_1^4 - \frac{3}{4}g_1^2g_2^2 + \frac{9}{8}g_2^4, \\ 8\pi^2 \frac{d\lambda_4}{dt} &= (\lambda_1 + \lambda_2)\lambda_4 + 4\lambda_3\lambda_4 + 2\lambda_4^2 + 4|\lambda_5|^2 + 5|\lambda_6|^2 + 5|\lambda_7|^2 + \lambda_6\lambda_7^* + \lambda_6^*\lambda_7 \\ &-\lambda_4 \left(\frac{3}{2}g_1^2 + \frac{9}{2}g_2^2\right) + \frac{3}{2}g_1^2g_2^2, \\ 8\pi^2 \frac{d\lambda_5}{dt} &= \lambda_5 \left(\lambda_1 + \lambda_2 + 4\lambda_3 + 6\lambda_4\right) + 5\lambda_6^2 + 5\lambda_7^2 + 2\lambda_6\lambda_7 \\ &-\lambda_5 \left(\frac{3}{2}g_1^2 + \frac{9}{2}g_2^2\right), \\ 8\pi^2 \frac{d\lambda_6}{dt} &= 6\lambda_1\lambda_6 + 3\lambda_3(\lambda_6 + \lambda_7) + \lambda_4(4\lambda_6 + 2\lambda_7) + \lambda_5(5\lambda_6^* + \lambda_7^*) \end{split}$$

M. Maniatis

University of Bielefeld

Hypercharge

Maximmally CP

| case | $\eta_{01}$  | $\eta_{02}$  | $\eta_{03}$  | $\eta_{12}$  | $\eta_{13}$  | $\eta_{23}$  | $\eta_{11}$  | $\eta_{22}$  | $\eta_{33}$  | invariant terms                                                                                  |
|------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------------------------------------------------------------------------------------------|
| 1)   | 0            | 0            | $\checkmark$ | $\checkmark$ | 0            | 0            | $\checkmark$ | $\checkmark$ | $\checkmark$ | $K_3, K_1 K_2, K_1^2, K_2^2, K_3^2$                                                              |
| 2)   | $\checkmark$ | $\eta_{01}$  | 0            | $\checkmark$ | $\checkmark$ | $-\eta_{13}$ | ~            | $\eta_{11}$  | $\checkmark$ | $K_1 + K_2, K_1 K_2, (K_1 - K_2) K_3$<br>$K_1^2 + K_2^2, K_3^2$                                  |
| 3)   | $\checkmark$ | $-\eta_{01}$ | 0            | $\checkmark$ | $\checkmark$ | $\eta_{13}$  | √            | $\eta_{11}$  | $\checkmark$ | $ \begin{array}{l} K_1 - K_2, K_1 K_2, \\ (K_1 + K_2) K_3, K_3^2, \\ K_1^2 + K_2^2 \end{array} $ |
| 4)   | $\checkmark$ | $\eta_{01}$  | $-\eta_{01}$ | $\checkmark$ | $-\eta_{12}$ | $-\eta_{12}$ | √            | $\eta_{11}$  | $\eta_{11}$  | $K_1 + K_2 - K_3, K_1 K_2 - (K_1 + K_2) K_3, K_1^2 + K_2^2 + K_3^2$                              |
| 5)   | $\checkmark$ | $\eta_{01}$  | $\eta_{01}$  | $\checkmark$ | $\eta_{12}$  | $\eta_{12}$  | √            | $\eta_{11}$  | $\eta_{11}$  | $K_1 + K_2 + K_3, K_1K_2 + K_1K_3 + K_2K_3, K_1^2 + K_2^2 + K_3^2$                               |
| 6)   | 0            | 0            | 0            | 0            | 0            | 0            | $\checkmark$ | $\checkmark$ | $\checkmark$ | $K_1^2, K_2^2, K_3^2$                                                                            |
| 7)   | 0            | 0            | 0            | $\checkmark$ | 0            | 0            | $\checkmark$ | $\eta_{11}$  | $\checkmark$ | $K_1K_2, K_1^2 + K_2^2, K_3^2$                                                                   |
| 8)   | 0            | 0            | 0            | $\checkmark$ | $-\eta_{12}$ | $-\eta_{12}$ | $\checkmark$ | $\eta_{11}$  | $\eta_{11}$  | $K_1 K_2 - (K_1 + K_2) K_3, K_1^2 + K_2^2 + K_3^2$                                               |
|      |              |              |              |              |              |              |              |              |              | K.K. + K.K. + K.K.                                                                               |

M. Maniatis

University of Bielefeld