Vector bosons scattering and boundary conditions in KK toy model

Petr Morávek, Jiří Hořejší

Institute of Particle and Nuclear Physics
Faculty of Mathematics and Physics
Charles University in Prague
Czech Republic

Standard Model

Higgs mechanism, tree-level unitarity

Higher-dimensional models

Compact extra dimension(s)

- Infinite space dimension compactified e.g. on S^{1} / Z_{2} orbifold.

- Finite space dimension - "interval approach".

Higher-dimensional models

Electroweak symmetry breaking

- Gauge Higgs Unification - Higgs field arises from extra component(s) of higher-dimensional gauge field.
- Higgsless models - Electroweak symmetry is broken via a non-trivial choice of boundary conditions for gauge field, no physical scalar is needed.

Pure gauge 5D theory on flat background

 with one extra finite space dimension- $y \in(0, \pi R)$
- $A_{N}^{a}\left(x^{\mu}, y\right)=\left(A_{\nu}^{a}\left(x^{\mu}, y\right), A_{5}^{a}\left(x^{\mu}, y\right)\right)$
- $F_{M N}^{a}=\partial_{M} A_{N}^{a}-\partial_{N} A_{M}^{a}+g_{5} f^{a b c} A_{M}^{b} A_{N}^{c}$
- R_{ξ} gauge: $\mathscr{L}_{\text {g.f. }}=-\frac{1}{2 \xi}\left(\partial_{\mu} A^{a \mu}-\xi \partial_{5} A_{5}^{a}\right)^{2}$

Pure gauge 5D theory on flat background

 with one extra finite space dimension- $y \in(0, \pi R)$
- $A_{N}^{a}\left(x^{\mu}, y\right)=\left(A_{\nu}^{a}\left(x^{\mu}, y\right), A_{5}^{a}\left(x^{\mu}, y\right)\right)$
- $F_{M N}^{a}=\partial_{M} A_{N}^{a}-\partial_{N} A_{M}^{a}+g_{5} f^{a b c} A_{M}^{b} A_{N}^{c}$
- $\mathscr{L}_{\text {gauge }}=-\frac{1}{4} F_{M N}^{a} F^{a M N}=-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}-\frac{1}{2} F_{\mu 5}^{a} F^{a \mu 5}$
- R_{ξ} gauge: $\mathscr{L}_{\text {g.f. }}=-\frac{1}{2 \xi}\left(\partial_{\mu} A^{a \mu}-\xi \partial_{5} A_{5}^{a}\right)^{2}$

Equations of motion, boundary conditions

Variational principle of least action $(\delta S=0)$ gives us

- equations of motion
- $\partial^{M} F_{M \nu}^{a}-g_{5} f^{a b c} F_{M \nu}^{b} A^{c M}+\frac{1}{\xi} \partial_{\nu} \partial^{\mu} A_{\mu}^{a}-\partial^{\nu} \partial_{5} A_{5}^{a}=0$
- $\partial^{\mu} F_{\mu 5}^{a}-g_{5} f^{a b c} F_{\mu 5}^{b} A^{c \mu}+\partial_{5} \partial^{\mu} A_{\mu}^{a}-\xi \partial_{5} \partial_{5} A_{5}^{a}=0$
- requirement of zero boundary terms
- $\left[\left(\partial_{\mu} A^{a \mu}-\xi \partial_{5} A_{5}^{a}\right) \delta A_{5}^{a}\right]_{0}^{\pi R}=0$
- $\left[F^{a \nu 5} \delta A_{\nu}^{a}\right]_{0}^{\pi R}=0$

Possible boundary conditions

Equations of motion, boundary conditions

Variational principle of least action $(\delta S=0)$ gives us

- equations of motion

$$
\begin{aligned}
& \text { - } \partial^{M} F_{M \nu}^{a}-g_{5} f^{a b c} F_{M \nu}^{b} A^{c M}+\frac{1}{\xi} \partial_{\nu} \partial^{\mu} A_{\mu}^{a}-\partial^{\nu} \partial_{5} A_{5}^{a}=0 \\
& \text { - } \partial^{\mu} F_{\mu 5}^{a}-g_{5}{ }^{a b c} F_{\mu 5}^{b} A^{c \mu}+\partial_{5} \partial^{\mu} A_{\mu}^{a}-\xi \partial_{5} \partial_{5} A_{5}^{a}=0
\end{aligned}
$$

- requirement of zero boundary terms

$$
\begin{aligned}
& \text { - }\left[\left(\partial_{\mu} A^{a \mu}-\xi \partial_{5} A_{5}^{a}\right) \delta A_{5}^{a}\right]_{0}^{\pi R}=0 \\
& \text { - }\left[F^{a \nu 5} \delta A_{\nu}^{a}\right]_{0}^{\pi R}=0
\end{aligned}
$$

Possible boundary conditions

- $\left.\delta A_{\mu}^{a}\right|_{y=0, \pi R}=0,\left.\delta A_{5}^{a}\right|_{y=0, \pi R}=0$

Equations of motion, boundary conditions

Variational principle of least action $(\delta S=0)$ gives us

- equations of motion

$$
\begin{aligned}
& \text { - } \partial^{M} F_{M \nu}^{a}-g_{5} f^{a b c} F_{M \nu}^{b} A^{c M}+\frac{1}{\xi} \partial_{\nu} \partial^{\mu} A_{\mu}^{a}-\partial^{\nu} \partial_{5} A_{5}^{a}=0 \\
& \text { - } \partial^{\mu} F_{\mu 5}^{a}-g_{5} a^{a b c} F_{\mu 5}^{b} A^{c \mu}+\partial_{5} \partial^{\mu} A_{\mu}^{a}-\xi \partial_{5} \partial_{5} A_{5}^{a}=0
\end{aligned}
$$

- requirement of zero boundary terms

$$
\begin{aligned}
& \text { - }\left[\left(\partial_{\mu} A^{a \mu}-\xi \partial_{5} A_{5}^{a}\right) \delta A_{5}^{a}\right]_{0}^{\pi R}=0 \\
& \text { - }\left[F^{a \nu 5} \delta A_{\nu}^{a}\right]_{0}^{\pi R}=0
\end{aligned}
$$

Possible boundary conditions

- $\left.A_{\mu}^{a}\right|_{y=0, \pi R}=0,\left.\partial_{5} A_{5}^{a}\right|_{y=0, \pi R}=0$
- $\left.\partial_{5} A_{\mu}^{a}\right|_{y=0, \pi R}=0,\left.A_{5}^{a}\right|_{y=0, \pi R}=0$

KK expansion, effective 4D Lagrangian

- KK expansion: $A_{\mu}^{a}(x, y)=\sum_{n} A_{\mu}^{a, n}(x) \varphi_{a, n}(y)$
- Boundary conditions keep the operator ∂_{y}^{2} hermitian with respect to scalar product $\langle f, g\rangle=\int_{0}^{\pi R} f^{*}(y) g(y) \mathrm{d} y$ \Rightarrow complete orthonormal basis exists and satisfies

$$
\varphi_{a, n}^{\prime \prime}(y)=-m_{a, n}^{2} \varphi_{a, n}(y)
$$

- $\square_{5} A_{\nu}^{a}(x, y)-\partial_{\nu} \partial^{\mu} A_{\mu}^{a}(x, y)=0 \Leftrightarrow$ $\left(\square_{4}+m_{a, n}^{2}\right) A_{\nu}^{a, n}(x)-\partial_{\nu} \partial^{\mu} A_{\mu}^{a, n}(x)=0$
- effective 4 D Lagrangian: $\mathscr{L}_{4 \mathrm{D}}(x)=\int_{0}^{\pi R} \mathscr{L}(x, y) \mathrm{d} y$

Interactions of effective 4D fields

- In unitary gauge $(\xi \rightarrow+\infty)$ are all massive modes $A_{5}^{a, n}$ ($n>0$) unphysical and play similar role as would-be Goldstone bosons of SM Higgs mechanism.
- Effective coupling constant in every vertex is given by an integral of wave functions, e.g. for 3 V vertex:
$g_{(a, i)(b, j)(c, k)}=g_{5} \int_{0}^{\pi R} \varphi_{a, i} \varphi_{b, j} \varphi_{c, k} \mathrm{~d} y$
- Scattering amplitudes of general $V_{\mathrm{L}} V_{\mathrm{L}} \rightarrow V_{\mathrm{L}} V_{\mathrm{L}}$ process do not grow explicitly with energy for any allowed choice of boundary conditions.

Example

Boundary conditions:

$$
\begin{aligned}
& \text { - } y=0: A_{\nu}^{1,2}=0, \partial_{y} A_{\nu}^{3}=0 \\
& \text { - } y=\pi R: \partial_{y} A_{\nu}^{a}=0
\end{aligned}
$$

Wave functions and masses:

- $\varphi_{W, n}(y)=\sqrt{\frac{2}{\pi R}} \sin \frac{(2 n-1) y}{2 R} \Rightarrow m_{W, n}=\frac{(2 n-1)}{2 R}, n \geq 1$
- $\varphi_{Z, n}(y)=\sqrt{\frac{2}{2^{\delta_{k, 0} \pi R}}} \cos \frac{2 n y}{2 R} \Rightarrow m_{Z, n}=\frac{2 n}{2 R}, n \geq 0$

Coupling constant:

- $g_{(W, i)(W, j)(Z, k)}=\frac{g_{5}}{\sqrt{2^{\delta_{k, 0} \pi R}}}\left(\delta_{j, i+k}+\delta_{j, i-k}-\delta_{j, 1-i+k}\right)$

Final remarks

- There are several ways how to break electroweak symmetry in higher-dimensional models.
- 5D theory is non-renormalizable, unitarity breakdown is postponed to the cutoff scale of effective 4D theory (related to the size of extra dimension).

Realistic models:

- More complicated gauge group, e.g. $S U(2)_{R} \times S U(2)_{L} \times U(1)_{B-L}$
- Warped extra dimensions.

Final remarks

- There are several ways how to break electroweak symmetry in higher-dimensional models.
- 5D theory is non-renormalizable, unitarity breakdown is postponed to the cutoff scale of effective 4D theory (related to the size of extra dimension).

Realistic models:

- More complicated gauge group, e.g.

$$
S U(2)_{R} \times S U(2)_{L} \times U(1)_{B-L}
$$

- Warped extra dimensions.

Thank you for your attention.

Vector bosons scattering and boundary conditions in KK toy model arXiv:1106.3043 [hep-th]

