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Standard Model
Higgs mechanism, tree-level unitarity

W
+

L

ZL

W
+

L

ZL

+

W
+

L

ZL

W
+

L

ZL

W

+

W
+

L

ZL

W
+

L

ZL

W = O(E2)

W
+

L

ZL

W
+

L

ZL

H



Higher-dimensional models
Compact extra dimension(s)

Infinite space dimension compactified e.g. on S1/Z2 orbifold.

Finite space dimension – “interval approach”.



Higher-dimensional models
Electroweak symmetry breaking

Gauge Higgs Unification – Higgs field arises from extra
component(s) of higher-dimensional gauge field.

Higgsless models – Electroweak symmetry is broken via
a non-trivial choice of boundary conditions for gauge field,
no physical scalar is needed.



Pure gauge 5D theory on flat background
with one extra finite space dimension
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Equations of motion, boundary conditions

Variational principle of least action (δS = 0) gives us

equations of motion
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KK expansion, effective 4D Lagrangian

KK expansion: Aa
µ(x, y) =

∑

n Aa,n
µ (x) ϕa,n(y)

Boundary conditions keep the operator ∂2
y hermitian with

respect to scalar product 〈f , g〉 =
∫ πR

0 f ∗(y)g(y) dy

⇒ complete orthonormal basis exists and satisfies
ϕ ′′

a,n(y) = −m2
a,nϕa,n(y)

�5Aa
ν(x, y) − ∂ν∂µAa

µ(x, y) = 0 ⇔
(

�4 + m2
a,n

)

Aa,n
ν (x) − ∂ν∂µAa,n

µ (x) = 0

effective 4D Lagrangian: L4D(x) =
∫ πR

0 L (x, y)dy



Interactions of effective 4D fields

In unitary gauge (ξ → +∞) are all massive modes A
a,n
5

(n > 0) unphysical and play similar role as would-be
Goldstone bosons of SM Higgs mechanism.

Effective coupling constant in every vertex is given by an
integral of wave functions, e.g. for 3V vertex:
g(a,i)(b,j)(c,k) = g5

∫ πR
0 ϕa,i ϕb,j ϕc,k dy

Scattering amplitudes of general VLVL → VLVL process do
not grow explicitly with energy for any allowed choice of
boundary conditions.



Example

Boundary conditions:

y = 0: A1,2
ν = 0, ∂yA3

ν = 0

y = πR: ∂yAa
ν = 0

Wave functions and masses:

ϕW ,n(y) =
√

2
πR

sin (2n−1)y
2R

⇒ mW ,n = (2n−1)
2R

, n ≥ 1

ϕZ ,n(y) =
√

2

2
δk,0 πR

cos 2ny
2R

⇒ mZ ,n = 2n
2R

, n ≥ 0

Coupling constant:

g(W ,i)(W ,j)(Z ,k) =
g

5√
2

δk,0 πR
(δj,i+k + δj,i−k − δj,1−i+k)



Final remarks

There are several ways how to break electroweak symmetry in
higher-dimensional models.

5D theory is non-renormalizable, unitarity breakdown is
postponed to the cutoff scale of effective 4D theory (related
to the size of extra dimension).

Realistic models:

More complicated gauge group, e.g.
SU (2)R × SU (2)L × U (1)B−L.

Warped extra dimensions.
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