Decoupling property of SUSY extended Higgs sectors

Shinya KANEMURA University of TOYAMA

S. K., T. Shindou, and K. Yagyu PLB699, 258 (2011) M. Aoki, S.K., T. Shindou, K. Yagyu, arXiv: 1108.1356 S.K, E. Senaha, T. Shindou, in preparation

Higgs sector and New Physics

- SM has been successful
 - But, yet to be established
 - Higgs sector is unknown

Possibility of a non-minimal Higgs sector

- Physics BSM is necessary
 - Hierarchy problem
 - Dark Matter
 - Neutrino mass
 - Baryon Asymmetry of Universe

We expect new physics BSM at the TeV scale

Higgs sector is the key to new physics

Higgs as a probe of new physics

- In SM, the Higgs boson mass is a free parameter
 - Triviality gives upper bound as a function of Λ
- Data indicate a light SM-like Higgs : mh < 145 GeV
 - LEP precision data, Tevatron, LHC
- Among new physics models, MSSM predicts a light Higgs:
 - a special 2HDM: h, H, A, H⁺, H⁻
 - m_h < m_z (tree), m_h < 120-130 GeV (loop)
 - It can be milder in extended SUSY Higgs sectors (ex NMSSM)
- When a *h* is found in near future, its mass, couplings and spin are thoroughly measured at experiments.
- We may be able to discriminate models (SM, 2HDM, MSSM, NMSSM,) from these information, even if additional bosons are not found.

Decoupling/Non-decoupling

Decoupling Theorem
 Appelquist-Carazzone 1975

 New phys. loop effect in observables
 1/Mⁿ → 0 (decouple for M→∞)

- Violation of the decoupling theorem
 - Chiral fermion loop (ex. Top, 4th gen.)

 $m_f = y_f v$

- Boson loop (ex. H^+ in non-SUSY 2HDM)

 $m_{\phi}^2 = \lambda_i v^2 + M^2$ (when $\lambda v^2 > M^2$)

Non-decoupling effect

Higgs potential

To understand the essence of EWSB, we must know the self-coupling in addition to the mass independently

$$V_{\text{Higgs}} = \frac{1}{2} \underline{m_h^2 h^2} + \frac{1}{3!} \underline{\lambda_{hhh}} h^3 + \frac{1}{4!} \underline{\lambda_{hhhh}} h^4 + \cdots$$

Effective potential
$$V_{\text{eff}}(\varphi) = -\frac{\mu_0^2}{2}\varphi^2 + \frac{\lambda_0}{4}\varphi^4 + \sum_f \frac{(-1)^{2s_f}N_{C_f}N_{S_f}}{64\pi^2}m_f(\varphi)^4 \left[\ln\frac{m_f(\varphi)^2}{Q^2} - \frac{3}{2}\right]$$

Renormalization
Conditions $\frac{\partial V_{\text{eff}}}{\partial \varphi}\Big|_{\varphi=v} = 0, \quad \frac{\partial^2 V_{\text{eff}}}{\partial \varphi^2}\Big|_{\varphi=v} = m_h^2, \quad \frac{\partial^3 V_{\text{eff}}}{\partial \varphi^3}\Big|_{\varphi=v} = \lambda_{hhh}$

SM Case
$$\lambda_{hhh}^{\text{SMloop}} \sim \frac{3m_h^2}{v} \left(1 - \frac{N_c m_t^4}{3\pi^2 v^2 m_h^2} + \cdots\right)$$

Non-decoupling effect

Case of Non-SUSY 2HDM

- Consider when the lightest h is SM-like $[\sin(\beta - \alpha) = 1]$
- At tree, the *hhh* coupling takes the ${\bullet}$ same form as in the SM

• At 1-loop, non-decoupling effect m_0^4

SK, Kiyoura, Okada, Senaha, Yuan, PLB558 (2003)

 $\Phi = H, A, H^{\pm}$

Large deviation in the *hhh* coupling: = implication to EW Baryogenesis =

Sakharov's conditions:

EW baryogenesis and the hhh coupling

Finite temperature potenital

$$V_{T}(\phi, T) = D(T^{2} - T_{0}^{2})\phi^{2} - ET\phi^{3} + \frac{\lambda_{T}}{4}\phi^{4} + \dots$$

$$\phi_{c}/T_{c} = 2E/\lambda_{T_{c}}$$

$$E = \frac{1}{12\pi v^{3}}(6m_{W}^{3} + 3m_{Z}^{3}) + \text{New Phys. Effect}$$

$$\lambda_{T} = m_{h}^{2}/2v^{2} + \log \text{ corrections}$$

$$\phi_{c}/T_{c} > 1 \Rightarrow 2E/\lambda_{T_{c}} > 1$$
SM: $m_{h} < 60$ GeV Excluded by LEP
2HDM: $m_{h} = 120$ GeV Possible due to
non-decoupling effect
Strong 1st OPT \Leftrightarrow Large *hbh* coupling

In this talk

We discuss decoupling property of various extended SUSY Higgs sectors

MSSM MSSM+singlet (NMSSM) MSSM+triplets 4HDM 4HDM+charged singlets

Especially, we consider the situation where SUSY particles are heavy and decouple, and study the deviation from SM or MSSM predictions on

- The lightest Higgs boson mass m_h
- The hhh coupling
- Other MSSM observables such as m_{H^+} and $sin(\beta-\alpha)$.

What is the difference from MSSM in extended SUSY Higgs sectors?

1. MSSM: only D term [+ (F-term top Yukawa at loop)] determines $m_{h'}$ hhh etc. $m_h^2 = m_Z^2 \cos^2 2\beta + \delta m_{loop}^2$

2. General SUSY Higgs sector (F-term exists)

 $V_{int} = |D|^2 + |F|^2 + Soft-breaking$

F-term contributions: appear with additional singlets, triplets $W = \lambda H_u H_d \varphi$

Large non-decoupling effects appear in MSSM observables via F-term

 $m_h^2 \simeq m_Z^2 \cos^2 2\beta + (\lambda_{HHS}^2 v^2/2) \sin^2 2\beta + \delta m_{\text{loop}}^2$

3. Model with only multi-doublets (MSSM + H_u', H_d', ...) No F-term (no trilinear HHH term in Superpotential) except for μ terms These models can decouple to MSSM when Hu', Hd' are heavy Only the D-term as well as Soft-breaking terms provide new effects M. Aoki, S.K., T. Shindou, K. Yagyu, arXiv: 1108.1356

F-term contributions

NMSSM (MSSM+S), and MSSM+ χ

Chiral Superfield: **S (singlet)**, **X (triplet)** which generate F-term interaciton

Next-to-MSSM (NMSSM)

Two Higgs doublets H_u , H_d and a singlet S

$$W = \lambda_{HHS} H_u . H_d S - \kappa S^3$$

Mass of the lightest *h* in the NMSSM

$$\begin{split} m_h^2 \simeq m_Z^2 \cos^2 2\beta + (\lambda_{HHS}^2 v^2/2) \sin^2 2\beta + \delta m_{\text{loop}}^2 \\ & \uparrow \\ \text{D-term} \\ \text{F-term} \\ \text{F-term} \\ \text{Kane, Kolda, Wells} \\ \text{RGE analysis with a cut-off scale } \Lambda \\ \end{split}$$

 $(m_h^{\sim} 450 \text{ GeV})$

Cut-off Λ : TeV scale $\rightarrow \lambda_{HHS} \sim 2.5$

Fat Higgs model

Harnik, Kribs, Larson, Murayama

Composite H_1, H_2, N A UV complete theory At low energy, a strong NMSSM $W = \lambda (NH_1H_2 - v_0^2)$

The SM-like Higgs can be heavy

$$\begin{split} m_h^2 &\simeq \lambda^2 v^2 + \mathcal{O}(m_Z^2) \\ M_{H^{\pm}}^2 &= M_A^2 - \lambda^2 v^2 \\ \hline \lambda \text{ can be of O(1)} \\ \Leftrightarrow m_h > 200 \text{ GeV} \end{split}$$

Upper limit on m_h as a function of tan β

The triple Higgs boson coupling

m_h determined by D-term F-terms only contribute to hhh

⇒ Large hhh deviation

EW Phase Transition in 4HDM+ Ω

Testable at ILC !

RGE analysis in 4HDM+ Ω

S.K., T. Shindou, K. Yagyu, 2010

HHH measurement at LHC and ILC

Higgs mass [GeV]

Summary

Decoupling property of variant SUSY models
F-term (nondecoupling effect)

Large effect on mh
NMSSM (low tanβ), MSSM with Triplets

2) Large effect on the *hhh* coupling

4HDM+Ω (charged singlets)
NMSSM (high tanβ)

These models can be a new viable model for EW baryogenesis

Soft-term Mixing (quasi-nondecoupling effect)

- 3) Large effect on *mh, mH+, mH, sin(b-a)*4HDM
- By precision measurements of the light Higgs properties, we can distinguish the various extended SUSY models.

Multi-Higgs doublets

M. Aoki, S.K., T. Shindou, K. Yagyu, arXiv: 1108.1356

- Additional doublets H_u', H_d' (4HDM)
- No tri-linear *HHH* term in Superpotential
- No F-term contriubtion to the potential at tree
- The model can reduce to the MSSM for heavy H'_u , H'_d .
- But possible non-decoupling effects from B-term with mixing between H_u , H_d and H_u' , H_d' .

When h, H, H⁺, A are found to be somehow MSSM like, we will thoroughly examine whether they are really of the MSSM or not. We then constrain the possibility of more than two doublets...

4HDM (Hu, Hd, Hu', Hd')

MSSM-like limit

(h, H⁺, A, H) + (extra doublets)

B-term mixing effect

TeV Hu', Hd' MSSM

 $L_{soft} = -\mathbf{B}_{14}\mu_{14}H_{u}H_{d}' - \mathbf{B}_{23}\mu_{23}H_{u}'H_{d} + \dots$

$$\bar{M}_{A}^{2} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{2(M_{3}^{2})_{11}}{s_{2\beta}} & \frac{m'M}{c_{\beta}} & \frac{mM}{s_{\beta}} \\ 0 & \frac{m'M}{c_{\beta}} & M^{2} + \frac{m_{Z}^{2}}{2}c_{2\beta} & 0 \\ 0 & \frac{mM}{s_{\beta}} & 0 & M^{2} - \frac{m_{Z}^{2}}{2}c_{2\beta} \end{pmatrix}$$
Bterm-Mixing

4HDM

r = O(1)

Mass of *h*

$$\begin{split} m_{h}^{2} = & \frac{1}{2} \left(m_{A}^{2} + m_{Z}^{2} \left(1 - (1 - R^{2}) s_{2\beta}^{2} \right) \right. \\ & - \sqrt{\left(m_{A}^{2} - m_{Z}^{2} \left(1 - (1 - R^{2}) s_{2\beta}^{2} \right) \right)^{2} + 4 m_{A}^{2} m_{Z}^{2} s_{2\beta}^{2} R^{2}} + m_{A}^{2} \mathcal{O} \left(\frac{m_{A}^{2}}{M^{2}} \right) \end{split}$$

Mass of H^+

$$\mathfrak{m}_{H^\pm} = \sqrt{\mathfrak{m}_A^2 + \mathfrak{m}_W^2} (1 + \delta)$$

$$\delta = -\frac{1}{2} \frac{m_W^2}{m_A^2 + m_W^2} \frac{k^2 + k'^2 r^2 - c_{2\beta} \left\{ (k^2 - k'^2 r^2) c_{2\bar{\theta}} + 2kk' r s_{2\bar{\theta}} \right\}}{2(k^2 + (1 + k'^2)r^2)} + \mathcal{O}\left(\frac{m_A^2}{M^2}\right)$$

4HDM

Mass of h

• Effect of extra doublet via *B*-term mixing

$$\delta_h \equiv rac{m_h}{m_h^{
m MSSM}} - 1$$

- Positive correction by a few % (Sensitive to tanβ)
- Comparable or less than MSSM one-loop $(A_t/M)^2$ effects

Mass of H^+

$$\delta_{\pm} \equiv \frac{\mathbf{m}_{\mathrm{H}} \pm}{\sqrt{\mathbf{m}_{A}^{2} + \mathbf{m}_{W}^{2}}} - 1$$

 Deviation from MSSM prediction Negative 5-10%

(Insensitive to $tan\beta$)

 Comparable or greater than MSSM radiative correction

